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1 Introduction

Building on work by De Nicoló and Lucchetta (2017) and Alessandri and Mumtaz (2017),

Adrian, Boyarchenko, and Giannone (2019; ABG) observe that current financial conditions

have a substantial negative effect on the lower quantiles of future real GDP (RGDP) growth

but have limited effect elsewhere in its conditional distribution. This observation has lead

to a surge of interest in growth-at-risk including, but not limited to, work by Coe and

Vahey (2020), who take a much longer historical context; Carriero, Clark, and Marcellino

(2020), who consider the role of conditional volatility; Brownlees and Souza (2021), who

take an international perspective, and Reichlin, Ricco, and Hasenzagl (2020), who provide

a negative assessment, concluding that financial conditions have little predictive content for

quantiles conditional on other macroeconomic information.

Although each of these papers bring their own angle to the literature on growth-at-risk,

they all share one thing in common: at least part of their analysis uses a current vintage

of the National Financial Conditions Index (NFCI) in a pseudo out-of-sample framework

to form predictions of RGDP growth. While instructive, by taking a pseudo out-of-sample

approach they do not ascertain whether the NFCI would have been useful for monitoring

tail risk in real time. To be fair, vintages of the NFCI only became available in May 2011

and hence could not have been used leading into the Great Recession or any other U.S.

recession prior to the COVID-19-induced recession of 2020. Even so, several of the series

used to construct the NFCI depend on GDP directly (e.g., the corporate debt-to-GDP

ratio) and hence pseudo out-of-sample analyses potentially lead to look-ahead biases when

predicting GDP growth. In addition, as emphasized by Brownlees and Souza (2021), since

the NFCI is estimated using a mixed frequency dynamic factor model, using the most recent

vintage avoids filtering uncertainty at the sample endpoints — an issue that is unavoidable

when using real-time data.

With this in mind, we make three contributions to the literature on growth-at-risk with

an eye towards the real-time nature of the problem. First, we construct (unofficial) real-

time weekly vintages of the NFCI from January 1988 through May 2011 with values that

date back to January 1971. The vintages are constructed using most of the financial series

in the official version as well as real-time GNP and GDP vintage data. They cover the
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same time span as the official NFCI, are weekly, and are constructed using mixed frequency

state-space code written by Scott Brave and Andrew Butters - the originators and curators

of the official NFCI. We then show that while the unofficial vintages are highly correlated

with the current official vintages, end-of-sample differences exist, making them less smooth

than current vintage values.

This leads to our second contribution. We provide analytical and Monte Carlo evidence

on tests of equal expected tick loss for nested quantile models when data are subject to

revision. The vast majority of the literature on tests of equal predictive ability, including

West (1996), Clark and McCracken (2001), Giacomini and Rossi (2010), and Rossi and

Sekhposyan (2011), assume that the observables, used to form and evaluate the forecast,

are unrevised. One could form an argument that the tests developed in Diebold and Mariano

(1995) and Giacomini and White (2006) are robust to the presence of revisions, but they

introduce other complicating issues: either parameter estimation is not present or they

require that a finite rolling window of observations is used to estimate parameters.

In contrast, Clark and McCracken (2009) develop tests of equal predictive ability un-

der quadratic loss, between OLS-estimated nested linear models, when the predictors and

predictands are subject to revision. They find that the presence of revisions can lead

to dramatically different asymptotic distributions associated with tests of equal accuracy.

Specifically, they find that test statistics with otherwise non-standard asymptotic distribu-

tions become asymptotically normal in the presence of predictable revisions. We find that

the same result applies to nested quantile models evaluated under tick loss.1

Having developed a method for evaluating forecast accuracy under tick loss in the pres-

ence of revisions, our final contribution is a thorough and methodologically sound evaluation

of the real-time predictive content of the NFCI vintages for RGDP growth. We find that

adding a single lag of the NFCI to a baseline Quantile Autoregressive (QAR) model with

one lag provides robust, substantial performance gains when predicting the lower tails of

RGDP growth. While this result only reinforces much of the existing literature, we also find

some evidence that the real-time vintages can lead to more accurate forecasts. Specifically,

we find that real-time vintages have superior predictive content leading into recessions.

1Corradi, Fosten, and Gutknecht (2020) constructs tests of equal tick loss between non-nested models
but do not consider data that are subject to revision.
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While tentative, we speculate that current vintages smooth over turning point information

in order to obtain lower factor volatility. Vintages leading into a recession may be more

volatile, but they cannot smooth through a recession that has yet to occur and hence retain

their signal.

Before proceeding, it is worth emphasizing that we are not the first to highlight the

real-time nature of growth-at-risk. Delle Monache, De Polis, and Petrella (2021) use a

current vintage of the NFCI for part of their analysis but then perform a related exercise

using a real-time data set composed of the individual series underlying the NFCI. Caldara,

Cascaldi-Garcia, Cuba-Borda, and Loria (2020) also consider the NFCI for part of their

analysis but also construct their own real-time macroeconomic and financial factors based

on a modest collection of five macroeconomic and four financial series. In the context of

the euro area, Ferrara, Mogliani, and Sahuc (2020) gather real-time macroeconomic and

financial data to predict growth-at-risk at the daily frequency. Nevertheless, our paper

stands out, first and foremost, by formally constructing (unofficial) historical vintages of

the NFCI and using those to conduct the forecasting exercises. In addition, in order to

assess these forecasts, we develop analytical tools for conducting asymptotic inference in

tests of equal tick loss in the presence of data revisions.

The remainder of the paper proceeds as follows. Section 2 describes construction of

the unofficial vintages of the NFCI and provides an assessment of their validity. Section

3 presents our proposed method for constructing tests of equal expected tick loss when

revisions are present. Section 4 presents Monte Carlo evidence on the finite sample size and

power of these tests. Section 5 we assesses the predictive content of the NFCI in a real-time

environment while also noting its behavior leading into recessions. Section 6 concludes.

2 Real-Time (Unofficial) Vintages of the NFCI

As we note in the introduction, the increasingly large literature on growth-at-risk typically

uses current vintages of the NFCI when forming retrospective quantile predictions of growth

in RGDP. In this section we first describe our approach to constructing a sequence of

unofficial real-time vintages of the NFCI. We then assess the quality of these vintages

relative to the current official NFCI vintages. Finally, we analyze the evolution of the
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real-time NFCI (RTNFCI) over time and provide motivation for the proceeding sections.

2.1 Constructing the Vintages

The NFCI is an indicator of overall financial conditions that is updated weekly by the

Federal Reserve Bank of Chicago. It was constructed by Brave and Butters (2012) using the

large approximate dynamic factor framework of Doz, Giannone, and Reichlin (2006). One

advantage of this framework is that it allows the authors to create a weekly latent indicator

that also uses monthly and quarterly series. Over time, the authors have substituted a few

of the original series, but these changes have not substantially altered the NFCI. Currently,

the NFCI contains 46 weekly, 33 monthly, and 26 quarterly series.

To construct the NFCI vintages, we first gather weekly data vintages for January 6,

1988, through May 18, 2011 (the week before the first official vintage was released). For

each vintage, the data extend back to January 1971 when available. We obtain financial

and survey data from Haver, Bloomberg, and FRED, as well GNP and GDP vintages from

ALFRED. We use 41 weekly, 25 monthly, and 26 quarterly of the original NFCI series.

Thus, for the last vintage constructed, 92 of the original 105 series are included.2 For the

financial and survey-based series, we assume any revisions are negligible. In order to ensure

the real-time nature of the series, we use the release timing information provided by the

original source of each series. For GNP and GDP, the only series with considerable data

revisions, we use the latest release as of each weekly vintage date.

Of the 92 series we use to construct the NFCI vintages, only six date back to January

1971. Furthermore, only 50 of the series contain data before 1988, the date of our first

constructed vintage. While the model is designed to handle missing values, to avoid the

inclusion of noisy information, we need a rule of thumb for how many observations a series

must have before it is included in each vintage. We include series that have two years worth

of observations, that is 104, 24, and 8 observations for data with a weekly, monthly, and

quarterly frequency, respectively. Figure 1 plots the number of series available for the first

vintage of each year for both our unofficial vintages and the hypothetical official vintages.3

2For the three delinquency rate series with NFCI mnemonics DBC, DCLOSE, and DHE, we sub-
stitute American Banking Associate (ABA) data for the FRED series DRCCLT100S, DRCLACBS, and
DRSREACBS, respectively.

3We thank Scott Brave for providing the availability information of each series in the NFCI.
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Notice that while 50 of the series contain data before 1988, not all these series are used in

the first vintage, due to our two-year inclusion rule. The first vintage that we construct

contains 45 series, while the last contains all 92 of our series. Most of the series are added

within the first 12 years, with 85 series included by the year 2000. The hypothetical official

NFCI vintages also start with 45 available series and end with all 105 series. From 1988 to

2001, the maximum number of extra series the hypothetical official NFCI vintages contain

is two. However, the availability of extra series increases to five in 2002 and continues to

increase until 2011 where all 13 extra series are included. More detailed information on the

availability of indicators is provided in Appendix A.

For a given weekly vintage of data, we estimate the latent factor using the Mixed

Frequency State Space (MFSS) toolbox in MATLAB put together by Brave, Butters, and

Kelley (2020), which uses the same mixed frequency state-space approach of Brave and

Butters (2012). Although it was assembled by the curators of the NFCI, there are some

slight differences in estimation methods. Namely, the system parameters in the MFSS are

found through optimization algorithms (e.g., gradient ascent and simplex based methods),

while the official NFCI is estimated via the EM algorithm of Shumway and Stoffer (1982) and

Watson and Engle (1983).4 We consider this difference in methodology to be insignificant,

especially relative to the large advantages gained by using code written by the authors of

the official NFCI.

For each vintage, we first transform the series according to the codes provided by the

NFCI curators.5 We then demean and normalize each transformed series to unit variance.

After the data preparation steps, we drop series with insufficient observations according to

the two-year rule outlined earlier in this section. We set up the state-space model with the

same assumptions as Brave and Butters (2012). Specifically, we assume there is a single

latent weekly factor that follows an AR(15) process. To deal with the low-frequency series

that are not point-in-time sampling types, the MFSS toolbox requires us to define their

accumulator type following Harvey (1989). We simply use the accumulators provided by

4We use the default settings of the MFSS toolbox with the exception that we only use gradient ascent.
When iterating between gradient ascent and simplex based methods, we lose substantial computational time
despite the fact that the resulting estimates are nearly identical.

5There are four exceptions where we choose different transformation codes. The series with NFCI
mnemonics MLIQ10, MBOND, MMF, and CBPER are kept as levels in the official NFCI. We choose to
transform each of these by taking the first difference, due to their lack of stationarity in levels.
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the NFCI curators. Finally, we are ready to estimate the model parameters. As noted

in Brave, Butters, and Kelley (2020), parameter initialization plays an important role in

finding the correct optima. With this in mind, we fastidiously follow the NFCI parameter

initialization methods given by Brave and Butters (2012). In early versions of the official

NFCI, the authors dropped the first two years (i.e., 1971 and 1972) of estimated data to

avoid any issues with the initialization. We follow this methodology for two reasons: 1) for

several vintages, the model returned strange values for the first several values of the latent

factor, and 2) we believe this more accurately represents how the NFCI would have been

given in vintages that precede the first official one.

Creating the 1220 unofficial weekly vintages between January 1988 and May 2011

presents a computational obstacle. While we would like to fully estimate the model pa-

rameters for each vintage, the optimization methods of the MFSS often take a long time to

converge, making this approach impractical. However, failing to re-estimate the parameters

with the most recently available data in real time poses accuracy risks to the validity of our

NFCI vintages. We try to find a middle ground, and instead re-estimate parameters in the

first week of each month. For off weeks, we apply the most recently estimated parameters

to the updated data. Because parameter estimates vary by only small amounts from week

to week, reusing parameter estimates across a maximum of four vintages does not create

any significant complications.

2.2 Assessing the Vintages

Although we closely follow the methodology of the official NFCI curators, it is important

to assess whether our unofficial vintages are comparable to the official versions. This is

especially the case since our estimates do not use all 105 of the series used in the NFCI.

Relatedly, Brave and Butters (2012) do robustness checks on their NFCI estimates and

find that when they use only 39 of the original series, the resulting latent factor hardly

resembles the official NFCI. Since we use 3-month averages of the NFCI vintages in the

empirical analysis later, our assessment focuses on these 3-month averages. Unreported

assessments of the raw weekly vintages yield comparable results.

Figure 2 plots a few select vintages against each other from 1971 to 2021. The blue,

orange, and yellow lines represent three of our unofficial vintages, while the purple and
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green lines represent two official vintages. The official 2021 vintage is the only vintage to

contain data from 1971 to 1972, since, as noted in Subsection 2.1, even early official vintages

dropped these first two years of observations. Ignoring the first two years, all five of the

vintages look strikingly similar. For the most part, the first four vintages seem to slowly

converge to the official 2021 series, with the large spikes in the 1970s and 1980s increasing

with each revision. Large deviations are common for the newest values of each vintage

(e.g., in the 1/27/1988 vintage where the 1987-1988 values are quite a bit lower than in the

other vintages). This feature is in-line with remarks made by Brownlees and Souza (2021)

concerning the high filtering uncertainty at sample endpoints for dynamic factor models.

While the 1988 vintage looks the most different from the official vintages, it is important to

note that only one of the original NFCI series that would have otherwise been available for

this period is missing from our data set. Thus, it is unlikely that the hypothetical official

vintage would have deviated significantly from our estimate.

We also calculate the correlation coefficients between the available observations of each

vintage. For brevity, we only report the coefficients between the first vintage of even years,

which are provided in Table 1. This table gives further evidence that, despite having fewer

series, our unofficial vintages are highly correlated with the official ones, with correlations

ranging from 0.9 to, effectively, 1. Unsurprisingly, the correlation coefficients tend to de-

crease as vintages get further apart. Nonetheless, even the 1988 and 2020 vintages have a

correlation of 0.93. Focusing on the bottom-right portion of the table, the vintages from

2010-2020 (including our unofficial 2010 and 2011 vintages) all have a correlation of at

least 0.98. The large positive correlations between our 2010 and 2011 vintages and the

official vintages, suggest that the 13 official series that are missing from our data set do not

significantly alter the latent factor.

2.3 The Real-Time Evolution of the NFCI

The results reported in Figure 2 and Table 1 suggest that our unofficial vintages of the

NFCI are quite close to the official versions. As such, we feel confident using our unofficial

vintages from 1988-2011 in conjunction with the official vintages from 2011-2021 to analyze

the importance of the NFCI as a real-time monitoring device. In the remainder of the paper

we refer to this conjunction of all real-time vintages as the real-time NFCI or RTNFCI, while
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we call the most recent 2021 vintage in our sample the Expost NFCI or EXNFCI. Finally,

we loosely use the term NFCI to refer to the index more generally (such as when we discuss

specific vintages, release timing, and the revision process).

Before discussing the NFCI’s usefulness in a real-time monitoring context, it is worth

noting that, as shown in Figure 2, revisions to its past values can be non-trivial. To get

a more comprehensive look at the magnitude of these revisions, Figure 3 plots the Expost

NFCI against the latest real-time value of each NFCI vintage from 1988-2021. For example,

for June 2, 2000, the orange line plots the value of the June 7, 2000, vintage (-0.06), while

the blue line plots the value (0.51) of the most recent vintage in our sample.6 One noticeable

difference between the expost and real-time versions is that, from 1988-2021, the former has

a variance of 0.24, while the latter is more volatile, with a variance of 0.40. There are a few

factors that play into this: 1) for a given vintage and its most recent date, some of the data

have not been fully revised and some of the data has not been released yet; 2) especially

in the first several years, new series are often added from vintage to vintage; and 3) the

parameters of the dynamic factor model evolve between the vintages as the model takes in

more data. It is unsurprising that the left-hand side of the plot exhibits a larger portion of

the higher volatility since 2) and 3) are especially potent for earlier vintages. Besides the

difference in volatility, the two plots roughly mimic each other with a correlation of 0.88 –

lower than those found in Table 1 but not drastically so.

Finally, we provide some initial evidence on the usefulness of the EXNFCI and RTNFCI

in the context of a collection of out-of-sample RGDP quantile forecasting exercises. We

do so by giving a big picture overview with an eye towards identifying which features of

the quantile regressions are most relevant. Specifically, for τ = 1 (4), we forecast quantiles

of annualized RGDP growth (average annualized RGDP growth)7 with origins of 1988Q1

through 2019Q4 (2019Q1). Notice that we do not include the COVID-19 period in our

sample. We exclude this period because large outliers occur at the horizons 2020Q2 and

2020Q3, which shroud the patterns exhibited from 1988-2019. We continue discussion of

the COVID-19 period in Section 5.

6The official NFCI is released the first Wednesday after the reference week. We follow this pattern
throughout.

7We evaluate forecasts with the advance release of GDP, although we performed this exercise for both
the third and current estimates and obtained similar results.
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Forecast origins take place on the first day of the second month of each quarter (e.g., for

the forecast origin 1988Q1 and τ = 1, we forecast 1988Q1 using the information available

on February 1, 1988). We use models including just an intercept, an intercept with the

once lagged NFCI, an intercept with lagged RGDP growth, and an intercept with both

lagged GDP and lagged NFCI. Thus the unrestricted model takes the form ŷ
(α)
s,τ = x′sβ̂

(α)

for xs = (1, ys, zs)
′, where ys is RGDP growth, zs is the NFCI, and α ∈ (0, 1) is the

chosen conditional quantile. The restricted models are obtained by setting the coefficients

on ys and/or zs to zero. For each model including the NFCI, there are an additional four

permutations resulting from: 1) whether we use the EXNFCI or the RTNFCI and 2) whether

we use calendar quarter averages of the NFCI (e.g., for Q1 the average of January-March)

or 3-month averages of the most recent information (e.g., for Q1 the average of February-

April). Furthermore, for each model there are six additional permutations resulting from:

1) whether we use a rolling or recursive window and 2) the initial estimation window size,

with choices of R = 30, 60, 90.8 9 Thus, for a given quantile and horizon, there are 60

forecasting models in total. We evaluate each of the 60 permutations under average tick

loss:

P−1
T−τ∑
t=R

L(û
(α)
s+τ ) = P−1

T−τ∑
t=R

(α− 1(ys+τ ≤ ŷ(α)
s,τ ))(ys+τ − ŷ(α)

s,τ ).

Given the j = 1, ..., 60 permutations, we use an ANOVA-type regression to identify the

importance of the considered treatment effects. This takes the form

Yj,(α,τ) =γ0 + γ1Rollj + γ2R60,j + γ3R90,j + γ4GDPj + γ5EXNFCIj + γ6RTNFCIj

+ γ7(EXNFCIj ∗ Calj) + γ8(RTNFCIj ∗ Calj) + εj ,

where for a fixed horizon τ and quantile α, Yj,(α,τ) is the natural logarithm of mean loss

for model j. All RHS variables, other than the intercept, represent indicators of one of the

treatments. Rollj indicates that rolling windows are used for estimation. R60,j and R90,j

indicate window sizes of 60 and 90 are used at the initial forecast origin. GDPj indicates

that RGDP growth is included. EXNFCIj and RTNFCIj indicate that the corresponding

8Under the rolling scheme, these are the sizes of the estimation sample at each forecast origin. Under the
recursive scheme, these represent the number of observations used up to and including the initial forecast
origin.

9When R = 90 the first forecast origin for τ = 1 (4) is 1993Q3 (1995Q1). The forecast origin starts later
due to not having 90 observations to regress on from 1971-1988.
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indicators are included. Calj indicates that the EXNFCI or RTNFCI uses calendar averages

rather than the staggered 3-month average approach described earlier. Table 2 reports the

resulting coefficients and p-values of each regressor for τ = 1, 4 and five distinct quantiles

α = 0.05, 0.10, 0.50, 0.90, 0.95. Coefficients represent the average percentage change in mean

loss associated with the inclusion of the given dummy variable in the model.

Strikingly, for both forecast horizons, in the lower tails (i.e., α = 0.05 and α = 0.1) the

EXNFCI and RTNFCI dummy variables all have negative coefficients of -0.35 or lower, and

all but one of these cases are statistically significant at the 5% level. In other words, for all

of these models, the inclusion of the EXNFCI or RTNFCI is associated with at least a 35%

decrease in mean loss. On the other hand, the coefficients of the EXNFCI and RTNFCI

dummy variables tend to be positive in the upper tails (i.e., α = 0.9 and α = 0.95). These

results support much of the existing literature, including ABG, which show that the NFCI

is a useful tool for predicting downside risks to GDP, but not upside risks. Notably, the

RTNFCI performs similarly (and sometimes better) than the EXNFCI. Though it is less

decisive, the GDP inclusion indicator has negative coefficients at every horizon and quantile

albeit not always significantly so. Somewhat surprisingly, as indicated by the insignificant

coefficients in the final two rows, the choice of quarterly aggregation of the weekly NFCI

(i.e., current 3-month vs. calendar quarter) appears to not play an important role.

Moving on to estimation-oriented indicators, both the R60 and R90 dummy variables

have negative coefficients in the lower tails when τ = 1 and for all quantiles when τ = 4,

suggesting that models with larger window sizes tend to perform better in these instances.

Importantly, the rolling window indicator typically has statistically significant positive co-

efficients in the lower tail, suggesting that the recursive scheme is preferred. In contrast,

when τ = 1, these coefficients are negative in the upper tail, suggesting that the rolling

scheme is preferred.

3 Real-Time Inference on Equal Tick Loss

As noted in the introduction, our goal is to assess the real-time predictive content of finan-

cial conditions, specifically the NFCI, for U.S. RGDP growth. In the previous section we

addressed one aspect of this issue: obtaining real-time (unofficial) vintages of the NFCI that
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avoid look-ahead biases. Having obtained these vintages, we now address a second aspect

of this issue: how to conduct inference in tests of equal predictive ability — between two

nested quantile regression models — when data are subject to revision.

To understand the problem, note that the quantile regressions in ABG largely come

from two models: one that uses an intercept and one lag of RGDP growth as predictors

and one that also includes one lag of the NFCI and hence nests the baseline model. In

this framework, the issue of data revisions arises in two distinct ways as we move across

forecast origins. First, the lagged predictors are both subject to revision. For RGDP, this

is due to the regular revision process that the Bureau of Economic Analysis conducts as

more information is gathered on the reference quarter. For the NFCI, the revisions arise

not only due to filtering uncertainty, but also due to revisions in GDP that are used in

the construction of the index. Second, when evaluating the accuracy of the quantile losses

under tick loss, one needs to choose a specific future vintage of realized RGDP growth for

the predictand, and that vintage will also remain subject to revision.

This matters because data revisions can have a dramatic effect on the asymptotic dis-

tribution of tests of out-of-sample predictive ability. In the absence of data revisions, Clark

and McCracken (2001) and McCracken (2007) show that sample averages of loss differentials

from nested models will not be asymptotically normal but will instead have non-standard

asymptotic distributions with representations as functions of stochastic integrals. In con-

trast, Clark and McCracken (2009) show that, in the context of conditional mean forecasts

evaluated under quadratic loss, these sample averages can be asymptotically normal de-

pending on properties of the revision process. In the following, we adapt their framework

to an environment where quantile regressions are evaluated under tick loss.

3.1 Framework

At each forecast origin t = R, ..., T − τ , forecasts are constructed using current vintage data

{ys(t), x′s(t)}ts=1. This data consist of a scalar predictand ys(t) and vector of predictors xs(t)

associated with observations s = 1, ..., t. With each new vintage, a subset of the most recent

observations is subject to revision. Specifically, we allow the observables to be subject to

a regular revision process over a finite number of periods r with r << t. This is a useful

approximation as it implies that, in large samples, the sequence of parameter estimates are
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consistent for their population counterparts - the fact that the last r observations are subject

to revision is asymptotically irrelevant. Were we to permit a longer lived revision process,

perhaps one that includes benchmark revisions, we would have to consider a situation

in which the population parameters were time varying, not due to any structural change

in the economy, but rather due to the revision process itself. Finally, when the revision

process is complete and the data are final, for simplicity we drop the parenthetical and let

(ys(t), x
′
s(t)) = (ys, x

′
s).

In the spirit of our proposed application, the τ -step-ahead conditional quantile forecasts

are based on two linear models x′j,s(t)βj j = 1, 2, where x2,s(t) = (x′1,s(t), x
′
22,s(t)) and

hence model 2 nests model 1 and under the null we have β∗2 = (β∗′1 , 0
′)′. For a given

quantile α ∈ (0, 1), both β1 and β2 are re-estimated as we move across forecast origins by

minimizing the relevant tick loss function.10 When a recursive estimation window is used,

this optimization takes the form

β̂
(α)
j,t = arg min

βj

∑t−τ

s=1
(α− 1(ys+τ (t) ≤ x′j,s(t)βj))(ys+τ (t)− x′j,s(t)βj).

When a rolling estimation window is used, the optimization is comparable but the sum-

mation is replaced with
∑t−τ

s=t−R+1. Regardless of which estimation window is used, the

quantile forecasts x′j,t(t)β̂
(α)
j,t are evaluated against the future realization yt+τ (t′) for some

vintage t′ such that t′ − t + τ is a fixed and finite non-negative integer. This yields two

sequences of P forecast errors, denoted û
(α)
j,t+τ (t′) = yt+τ (t′) − x′j,t(t)β̂

(α)
j,t j = 1, 2, and

subsequent loss differentials

ft+τ (β̂
(α)
t ) = (α− 1(û

(α)
1,t+τ (t′) ≤ 0))û

(α)
1,t+τ (t′)− (α− 1(û

(α)
2,t+τ (t′) ≤ 0))û

(α)
2,t+τ (t′),

where β̂
(α)
t = (β̂

(α)′
1,t , β̂

(α)′
2,t )′.

We are interested in the asymptotic behavior of the out-of-sample average of the loss

differentials P−1
∑T−τ

t=R ft+τ (β̂
(α)
t ). If the function ft+τ (.) is twice continuously differen-

tiable in β̂
(α)
t , as it is under quadratic loss, methods developed in West (1996) are directly

applicable for doing so. Unfortunately, due to the presence of the indicator functions, it

is not continuously differentiable under tick loss. Instead, we apply results in McCracken

10Under tick loss, the argmin need not be unique. In our simulations and empirical work, we apply the
Frisch-Newton interior point method.
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(2000) that only require that the expectation of ft+τ (.), Eft+τ (.) be continuously differen-

tiable. A simple motivating example that satisfies this property is provided in the following

subsection.

Delineating the asymptotic distribution requires a bit more notation. As in West (1996)

and McCracken (2000), we assume that the sequence of parameter estimates satisfy β̂t−β∗ =

B(t)H(t) where H(t) denotes a vector of zero mean moment conditions and B(t)→a.s. B,

a full rank nonstochastic matrix. In the context of a single OLS regression in a stationary

environment with residuals εs+τ , B = (Extx
′
t)
−1 and for hs+τ = xsεs+τ , H(t) equals

t−1
∑t−τ

s=1 hs+τ or R−1
∑t−τ

s=t−R+1 hs+τ for the recursive and rolling schemes, respectively.

In the context of a single α-quantile regression in a strictly stationary environment with

residuals ε
(α)
s+τ , B = (Eϕα(0|xt)xtx′t)−1 and hs+τ = (α − 1(ε

(α)
s+τ < 0))xs, where ϕα(.|xs)

denotes the density function of ε
(α)
s+τ conditional on xs. Note though, for our application we

have two quantile regressions so that β̂
(α)
t = (β̂

(α)′
1,t , β̂

(α)′
2,t )′. This issue is readily addressed by

defining B = diag(B1, B2) and hs+τ = (h′1,s+τ , h
′
2,s+τ )′ for Bj = (Eϕα(0|xj,t)xj,tx′j,t)−1 and

hj,s+τ = (α− 1(ε
(α)
s+τ < 0))xj,s keeping in mind that under the null, ε

(α)
s+τ = ε

(α)
j,s+τ j = 1, 2.

With this structure in hand, applying the results in McCracken (2000) we obtain the

following expansion that separates the variation in the underlying moment being tested

from the variation due to parameter estimation error:

P−1/2
∑T−τ

t=R
ft+τ (β̂

(α)
t ) = P−1/2

∑T−τ

t=R
ft+τ (β∗) + FB(P−1/2

∑T−τ

t=R
H(t)) + op(1),

where F = ∂Eft+τ (β̂)/∂β̂|β̂=β∗ . This expansion is identical to one in West (1996) and

hence we can apply his Theorem 4.1, which implies that as both P and R tend to infinity,

P−1/2
∑T−τ

t=R
ft+τ (β̂

(α)
t ) → d N(0,Ω)

Ω = Sff + 2λfhFBS
′
fh + λhhFBShhF

′B′,

where Sff is the long-run variance of ft+τ (β∗), Sfh is the long-run covariance between

ft+τ (β∗) and ht+τ , and both λfh and λhh are non-stochastic functions of limP,R→∞ P/R = π

delineated in West (1996).11 12 This result provides us with an option for conducting

11Under the recursive scheme, π is allowed to diverge, while under the rolling scheme, π must remain
finite.

12To save space, we do not reiterate the assumptions made in the referenced papers. Loosely speaking,
the results described in this section require that the fully revised observables and revisions are strictly
stationary, that π > 0, and that the residuals from the quantile regressions have continuous PDFs in an
open neighborhood of the origin.
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asymptotically valid inference so long as Ω is positive and we can consistently estimate the

elements of Ω. An extensive discussion on the estimation of these elements is provided in

both West (1996) and McCracken (2000). For our application to a test of equal accuracy

between nested models, a few of these elements are particularly easy to estimate. For

example, under the null, the two models are equivalent and hence both Sff and Sfh are

zero since ft+τ (β∗) is zero. We therefore only need to estimate the elements λhh, B, Shh,

and F and do so without prior knowledge of the revision process absent that the process is

finite lived. Details on how we estimate these elements is left to section 4.

3.2 A Simple Example

Consider our motivating example, one in which we want to compare the predictive content

of two nested quantile regression models that take the form

ys+1 = β0,1 + β1,1ys + ε
(α)
1,s+1

= x′1,sβ1 + ε
(α)
1,s+1 (1)

and

ys+1 = β0,2 + β1,2ys + β2,2zs + ε
(α)
2,s+1

= x′2,sβ2 + ε
(α)
2,s+1. (2)

Here we have in mind that y denotes RGDP growth and z denotes the NFCI. Under the

null, β2,2 = 0 so that the NFCI has no predictive content for the α-quantile conditional on

the presence of yt. In the following we derive the asymptotic variance Ω under a specific

data generating process with an eye towards identifying whether or not Ω — and specifically

F — will be non-zero.

The data generating process for y is a Gaussian AR(1) that takes the form

ys+1 = δ0 + δ1ys + εs+1, εs ∼ i.i.d.N(0, σ2
ε). (3)

This process is convenient because the quantiles are location-scale and take the form

Q(α)(ys+1|ys) = σεΦ
−1(α) + δ0 + δ1ys,

where Φ(.) denotes the standard normal distribution function and Φ−1(.) denotes its inverse.

In the absence of revisions, the parameter estimates in the two quantile regressions will
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be consistent for their population counterparts such that β0,1 = β0,2 = σεΦ
−1(α) + δ0,

β1,1 = β1,2 = δ1, and β2,2 = 0. In addition, the α-quantile residuals take the form ε
(α)
s+1 =

εs+1 − σεΦ−1(α) and hence are Gaussian — albeit with a nonzero mean.

We can now begin to delineate the elements of the asymptotic variance. To do so,

first note that under the null, the quantile residuals ε
(α)
j,s+1 = ε

(α)
s+1 are conditionally homo-

amplitudinal and hence ϕα(0|xj,s) = ϕα(0). Moreover, we know ϕα(0) = σ−1
ε φ(Φ−1(α)) and

hence Bj = (Eϕα(0|xj,s)xj,sx′j,s)−1 simplifies to (Exj,sx
′
j,s)
−1/(σ−1

ε φ(Φ−1(α)))2. Similarly,

since the estimated models are correctly specified, we find that Shihj = E((α − 1(ε
(α)
s+τ <

0))2xi,sx
′
j,s) simplifies to (α− α2)(Exi,sx

′
j,s) for i, j = 1, 2.

Deriving a closed form for F requires knowledge of the revision process. For analytical

tractability we assume that the y variable is revised once and the revision is deterministic

such that yt = yt(t)+c. We could allow c to be stochastic, but it would needlessly complicate

the algebra below. For this exercise we do not consider revisions to z, but in the simulations

and empirics, we estimate Ω allowing for that option.

Given this revision process, we immediately find that for F = (F1,−F2), F2 takes the

form

F2 = ∂E[(α− 1(yt+1(t′)− x′2,t(t)β̂2 ≤ 0))(yt+1(t′)− x′2,t(t)β̂2)]/∂β̂2|β̂2=β∗2

= −E(α− 1(yt+1(t′)− x′2,t(t)β∗2 ≤ 0))x′2,t(t)

= −E(α− 1(u
(α)
2,t+1 ≤ (yt+1 − yt+1(t′))− (x′2,t − x′2,t(t))β∗2))(x′2,t − (x′2,t − x′2,t(t)))

= −E(α− 1(u
(α)
t+1 ≤ (yt+1 − yt+1(t′))− cδ1))(x′2,t − (0, c, 0)),

while for J ′ = (Ik1×k1 , 0k1×k22), F1 = F2J . This representation is instructive because it

allows us to see how F may or may not be zero. If c = 0 or if the forecast is evaluated using

revised data yt+1(t + 2) = yt+1 and δ1 = 0, then F is zero. But even if δ1 = 0, so long as

the forecast is evaluated using the initial release yt+1(t+ 1), F is non-zero.

We can now put the elements together and characterize the asymptotic variance. If we
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assume that the forecasts are evaluated against the initial release yt+1(t+ 1), we find that

Ω = λhhFBShhF
′B′

= λhhF2(−JB1J
′ +B2)Sh2h2(−JB1J

′ +B2)F ′2

= λhh(α− α2)(σ−1
ε φ(Φ−1(α)))−2F2(−J(Ex1,tx

′
1,t)
−1J ′ + (Ex2,tx

′
2,t)
−1)F ′2

= λhh(α− α2)(α− Φ(Φ−1(α) + c
(1− δ1)

σε
))2(σ−1

ε φ(Φ−1(α)))−2 ×

(0,−c, 0)(−J(Ex1,tx
′
1,t)
−1J ′ + (Ex2,tx

′
2,t)
−1)(0,−c, 0)′

= λhh(α− α2)(α− Φ(Φ−1(α) + c
(1− δ1)

σε
))2φ(Φ−1(α))−2σ

2
εc

2

σ2
y

(
ρ2
zy

1− ρ2
zy

), (4)

where σ2
y denotes the variance of yt and ρzy denotes the correlation between y and z.13 The

second equality arises because F1 = F2J and h1,s+1 = J ′h2,s+1. The third arises because the

quantile residuals are conditionally homo-amplitudinal, and under the null, both models are

correctly specified. The fourth arises due to the fact that u
(α)
2,t+1 is independent of x2,t and

Ex′2,t(−J(Ex1,tx
′
1,t)
−1J ′ + (Ex2,tx

′
2,t)
−1) = 0. The final equality is straightforward algebra

associated with the final component in the fourth equality.

While we have emphasized the importance of F not being zero for Ω to be positive,

the formula shows that other features are important as well. F can be non-zero and yet

F2(−J(Ex1,tx
′
1,t)
−1J ′ + (Ex2,tx

′
2,t)
−1) = 0. In this example, this occurs if ρzy = 0. While

it is clearly possible that F = 0, it is also true that this example is based on a DGP and

models that cause the formula to simplify tremendously. If the quantile errors were not

conditionally homo-altitudinal, if the revisions were anything but independent news, or if

the models were misspecified, it seems very unlikely that Ω would be zero, because none of

the simplifications after the third equality of (4) would exist.14

13If we evaluate against the revised value yt+1 the final result changes only insofar as the term c 1−δ1
σε

becomes −cδ1/σε. If the two models being compared are simpler cases in which the benchmark is just an

intercept and the nesting model is a QAR(1), the final results only change insofar as the term
σ2
εc

2

σ2
y

(
ρ2zy

1−ρ2zy
)

becomes c2.
14The emphasis on independence is important. The literature defines a revision (ct) as news if for yt(t) =

yt + ct, Ect = 0 and cov(yt(t), ct) = 0. In our simple example this is insufficient to make F2 = 0 unless
we also know that yt(t) and ct are independent. This is not the case in Clark and McCracken (2009). The
difference is that the score of a quadratic loss function is linear in the predictors, and that is not the case
under tick loss.
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4 Monte Carlo Evidence

In the previous section we delineated a framework for tests of predictive ability between two

nested quantile regression models when the data are subject to revision. Due to the novelty

of this framework, we provide Monte Carlo evidence on the finite sample size and power of

the test and do so in the context of the example provided in Section 3.2. While simplistic,

this example provides the advantage of having expected loss differentials and asymptotic

variances that are analytically tractable, which, in turn, facilitates interpretation of the

simulations. Because the models are nested, and the recursive scheme appears to be best

when forecasting the lower tails of GDP, we focus on recursively estimated models and

rejection frequencies in the upper tail of the asymptotic distribution of the test statistic used

to conduct inference. Additional results for two-sided tests or when the rolling estimation

scheme is used are provided in Appendix C.

4.1 Monte Carlo Design

There are two DGPs. For each we generate data using independent draws from normal

distributions and an assumed autoregressive structure. We focus on one-step-ahead forecasts

with initial sample sizes R ∈ {100, 500, 1000} and out-of-sample sizes P such that P/R ∈

{0.5, 1, 2}. All results are based on 5000 Monte Carlo draws.

For both DGPs, the fully revised data are generated by

yt = δ0 + δ1yt−1 + δ2zt−1 + ut

zt = γ1zt−1 + vt,

for t = 1, ..., T , where (ut, vt)
′ ∼ i.i.d.N (0,Σ) and Σ =

(
σ2
u σuv

σuv σ2
v

)
. In most instances,

the DGP parameters are loosely based on OLS estimates of AR(1) models for RGDP growth

and the 3-month averaged NFCI over a Great Moderation sample.

As we did in the simple example from Section 3.2, we consider a single-period revision

process for the dependent variable such that yt(t) = yt(t+ 1)− c but where z is not subject

to revision (i.e., zt(t) = zt). We focus on revision magnitudes of size c = 0.5σu and c = σu

but will investigate other magnitudes later in the context of the power of the test. Accuracy
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is evaluated using tick loss for the quantiles α ∈ (0.05, 0.1, 0.5).15 For each DGP, two nested

quantile regression models are estimated recursively across all forecast origins. Forecasts

from these two models are evaluated against the initial release of the dependent variable

yt+1(t+ 1).

DGP1: In the simplest of our two DGPs, the two nested models take the form

Restricted : yt+1 = β0,1 + ε
(α)
1,t+1

Unrestricted : yt+1 = β0,2 + β1,2yt + ε
(α)
2,t+1.

For all experiments, we set δ0 = 2, δ2 = 0, and σ2
u = 5. We set δ1 to 0 and 0.4 for the

size and power experiments, respectively.

DGP2: In the more complex of our two DGPs, the nested models take the form

Restricted : yt+1 = β0,1 + β1,1yt + ε
(α)
1,t+1.

Unrestricted : yt+1 = β0,2 + β1,2yt + β2,2zt + ε
(α)
2,t+1.

For all experiments, we set δ0 = 2, δ1 = 0.2, γ1 = 0.9, σ2
u = 5, σ2

v = 0.05, and ρyz = −0.5.

We set δ2 to 0 and −1.6 for the size and power experiments, respectively.

In all cases, the null hypothesis of equal expected tick loss is tested using the test

statistic:

OOS − t =
P−1/2

∑T−1
t=R L(û

(α)
1,t+h)− L(û

(α)
2,t+h)

√
V

, (5)

where V represents an estimate of the asymptotic variance of the numerator. We consider

four versions of this test statistic, each with a different estimate of this variance. The

first, denoted Θ, uses the (infeasible) estimated variance of the average loss differentials

across Monte Carlo draws. The second uses the theoretical asymptotic variance, Ω, given

in equation (4) of Section 3.2. The third, Ω̂, uses an estimate of Ω that takes the form

Ω̂ = λ̂hh

(
F̂1
′
, −F̂2

′
)(B̂1 0

0 B̂2

)(
J ′Ŝh2h2J J ′Ŝh2h2
Ŝh2h2J Ŝh2h2

)(
B̂1 0

0 B̂2

)(
F̂1

−F̂2

)
, (6)

where for P/R = π̂, λ̂hh = 2[1−π̂−1ln(1+π̂)], and J is a selection matrix.16 F̂i is constructed

using P−1
T−1∑
t=R

x′i,t(t)[1(yt+1(t+ 1) ≤ x′i,t(t)β̂
(α)

i,t
)− α]. After obtaining the residuals ε̂

(α)
i,s+1

15Note that for this DGP, the conditional quantiles are symmetric around the origin and hence we omit
results for the upper quantiles.

16Under the rolling scheme, λ̂hh takes the values π̂− π̂2/3 and 1− (3π̂)−1 when 0 ≤ π̂ ≤ 1 and 1 < π̂ <∞
respectively.
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when using the entirety of the final vintage to estimate models i = 1, 2, we follow White

and Kim (2002) and form B̂i
−1

using (2ĉTT )−1
T−1∑
s=1

1(|ε̂(α)
i,s+1| ≤ ĉT )xi,s(T )x′i,s(T ), with ĉT =

1.06σ̂
(α)
εi T

−η, and η ∈ (0, 1/2).17 Finally, we estimate the long-run variance of ĥ2,s+1 =

(α−1(ε̂
(α)
2,s+1 < 0)x2,s(T ), Ŝh2h2 , using the Bartlett kernel and bandwidth b4(T/100)2/9 +1c.

The fourth version of the test statistic simply uses Ŝdd, the sample variance of the out-of-

sample loss differentials. All test statistics are compared against critical values from the

standard normal distribution.

4.2 Monte Carlo Results

For all experiments, we report one-sided rejection frequencies at the 5% significance level.

Table 3 reports results on the actual size of the test for DGP1. The top section of the

panels provide rejection frequencies when using the two valid, but infeasible, versions of

the test statistic. In both instances there is a tendency to underreject, more so for smaller

sample sizes and quantiles. Between the two, the Ω-based tests arguably perform the

best. Regardless, these two are included in the table largely to reinforce the validity of the

asymptotic results described in Section 3.1.

As a practical matter, the bottom section of the panels are the ones that are most

relevant for a practitioner. Contrary to the aforementioned tests, the Ω̂-based tests have a

tendency to overreject, with sizes ranging from 5% to 11%. In accordance with the theory,

the actual size of the test tends to improve with the sample size. The actual size seems to

be a bit better for the larger revisions, for reasons that are not immediately clear. We also

continue to observe that the actual size tends to be a bit worse as we get further into the

tails. The final panel reports rejection frequencies for the Ŝdd-based tests. In most instances,

the rejection frequencies are well above those associated with a nominally 5% test. Even

worse, the issue deteriorates as the sample size increases, with rejection frequencies nearing

50%. The root of the problem is that Ŝdd converges in probability to zero. Therefore, since

the numerator of the test statistic in (5) is asymptotically normal with zero mean, as Ŝdd

converges to zero we expect rejection frequencies to converge to 50% in the upper tail (and

50% in the lower tail were we doing a two-sided test).

17We report results for η = 1/40 but obtain broadly similar results for a range of smaller and larger values.
To be clear, the results are sensitive to this parameter. See McCracken (2004) for more discussion on this
choice for out-of-sample inference.
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Table 4 reports the power results for DGP1. There are three clear trends common among

all four of the test statistics. First, as expected, power improves with sample size. Rejection

frequencies for the smallest R and P/R settings range from 15% to 97%, whereas for the

largest R and P/R settings, they essentially max out at 100%. Second, at least for small

samples, actual power tends to decline as we move into the tails. Third, power appears

to increase with the magnitude of the revision c. This increase, however, turns out to be

misleading - a point we revisit later in this section. Regardless, what is most important is

that the Ω̂-based tests have reasonable power across all permutations of sample size and

quantile.

Table 5 reports the size results for DGP2. Θ-based rejection frequencies range from

2% to 8% and improve as the sample size increases. For this DGP, Ω-based statistics

substantially overreject in the smallest samples, with actual sizes ranging from 12% to 21%.

Even so, there is a clear pattern of improvement as either the initial or out-of-sample size

increases. Ω̂-based tests exhibit modest overrejections, with values ranging from 6% to 15%.

However, in contrast to the size results in Table 2, there is no clear pattern of improvement

as the sample size increases. At the lowest quantile and the smallest revision, the actual size

tends to rise with the sample size. But for the largest quantile and revision, it is typically

the case that the actual size improves as the sample size increases. Finally, as expected,

the Ŝdd-based tests perform poorly. While there are instances where the rejection frequency

is between 3% and 6% for the lowest quantile, in nearly all other instances the rejection

frequencies rise to the 20% to 50% range as the sample size increases — exactly what we

saw in Table 2.

Table 6 reports the power results for DGP2. Focusing first on results with c = 0.5σu,

power increases with sample size for each type of test statistic. The Ω- and Ω̂-based tests

yield the highest power for all permutations while the infeasible Θ-based tests yield almost

no power except when α = 0.5 and the sample size is large. In all cases, power increases as

α approaches 0.5.

The most striking result from this table is the lack of power when c = σu. In fact, power

decreases with the sample size — with reported rejection frequencies of essentially 0% for

the largest R and P/R settings. To understand the striking distinctions in power, consider

Figure 4. Here, we plot expected tick loss for the restricted and unrestricted models, as a
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function of c/σu. The parameters are the same as those in the DGP2 simulations. There

are four subplots corresponding to quantiles of 0.05, 0.1, 0.25, and 0.5. The expected losses

of the restricted model are plotted using simulations, whereas the unrestricted model’s

expected losses are plotted using equation (B.1) from Appendix B. When the unrestricted

model’s expected losses are lower than that of the restricted model, we should expect power

in the right tail of the asymptotic distribution of the test statistic in (5), whereas we

should expect power in the left tail when the opposite is true. Unsurprisingly, for each plot

the unrestricted model’s expected losses are minimized when there are no revisions and

increase with the absolute magnitude of the revisions. When α = 0.5, expected losses are

symmetric, but for α < 0.5 the magnitude of expected losses increases more steeply with

positive revisions than negative ones. The expected loss for the restricted model varies with

α and σu in a similar fashion as for the unrestricted model, but are slightly less sensitive to

changes in σu.

The plots contextualize the rejection frequencies reported in Table 6. Figure 4 reveals

that when c = 0.5σu, the expected loss of the unrestricted model is slightly lower than that

of the restricted model, and hence the Monte Carlo simulations yield power in the upper

tail. Moreover, as α increases the expected loss differential increases as well, and this is

reflected in Table 6 – as we move from α = 0.05 to α = 0.5 the test’s power increases. On

the other hand, when c = σu, the two models have expected loss differentials of −0.0385,

−0.0540, −0.0698, and −0.0598 for the quantiles 0.05, 0.1, 0.25, and 0.5, respectively. In

each case, the expected loss differential is negative and thus, as seen in Table 6, we should

not expect to see power in the upper tail.

Table 7 reports the rejection frequencies from the same DGP when we use two-sided

tests. The rejection frequencies when c = σu are much higher than those in Table 6,

clearly stemming from rejections in the lower tail. Amalgamating the findings in Figure 4

and Tables 6 and 7, we conclude that for our experiment design, in the presence of large

revisions, power can actually materialize in the left tail despite the restricted model being

incorrectly specified under the alternative.

Altogether, we find that the proposed test of equal tick loss can be reasonably well sized

and exhibit substantial power. Even so, the simulation evidence exposes some weaknesses.

Actual size and power tend to be worse the further out we go in the tails. Not unexpectedly,
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the actual size of the test tends to improve with the sample size. In addition, properties of

the revision process are likely to affect actual size and power irrespective of sample size —

and in the case of power, can lead to unexpected deviations from the null hypothesis. For

this reason, in the following empirical section, all tests are conducted against a two-sided

alternative.

5 Empirical Results

In this section, we use the vintage data and the approach to inference described above,

to evaluate whether in real time the NFCI is a useful tool for monitoring downside risk

to RGDP growth. Specifically, we use real-time vintage data for RGDP and the NFCI to

construct quantile forecasts using the two nested models described in equations (1) and

(2) from Section 3.2. We then evaluate the relative forecast accuracy of these two models,

under tick loss, based on the asymptotic inference delineated in Sections 3.1 and 4.

We obtain GNP, GDP, NFCI, and NBER recession data from the FRED and ALFRED

databases. The data date back to 1971Q1, and we obtain vintages from January 1988

through August 2021. Throughout we generalize by using the term GDP despite using GNP

in vintages before December 1991. Forecast origins take place at the start of the second

month of a given quarter, and we evaluate forecasts for the horizons τ = 1, ..., 12, with

an emphasis on horizons 1 and 4, those discussed in ABG. For example, the first forecast

origin is February 1, 1988, and for τ = 1 (12) the target dates are 1988Q1 (1990Q4). For

the NFCI and RTNFCI, we use non-calendar 3-month averages, that is, averages that use

the most recent 3 months of observations at a given origin. To evaluate tick loss, we use

the initial release of GDP but find comparable results when using the third estimate and a

recent vintage (August 26, 2021). Note that our formal evaluation does not include periods

associated with the COVID-19 pandemic for reasons that we later clarify.

We evaluate the forecasts using the same approach as was considered in the Monte

Carlo simulations from the preceding section. That is, we estimate the asymptotic variance

Ω using the nonparametric method presented in (6) and its components as described in the

subsequent paragraph. We consider both recursive and rolling forecasts and evaluate each

using the same methods, with the distinction that the respective formulas for λhh differ. For
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some window sizes and horizons, the first forecast origin takes places later than February

1, 1988, due to an insufficient number of observations for the direct multi-step estimation.

For example, when R = 90 and τ = 1 the first forecast origin is November 1, 1993, and

when R = 60 and τ = 12, the first forecast origin is February 1, 1989.

Tables 8 and 9 present results for the comparison of the two nested quantile forecasting

models when using the recursive and rolling schemes, respectively. In the first section of

panels we use the current vintage NFCI (i.e., EXNFCI), while in the second we use the real-

time vintages of the NFCI (i.e., RTNFCI). For a given unrestricted model, window size, α

quantile, and horizon, we report the percentage change in the average tick loss between

the unrestricted and restricted models as well as the p-values associated with the OOS − t

test statistic delineated in (5). Note that we use a two-sided test due to our findings in

Section 4, which indicated that revisions can result in the restricted model outperforming

the unrestricted model even when the NFCI has predictive content. While our focus is

on the lower tails of the conditional distribution of RGDP growth, for completeness we

consider two quantiles in the lower and upper tails as well as the median. In addition, for

robustness, we consider three distinct initial sample sizes, 30, 60, and 90, for estimation of

the parameters. For brevity, we only report the results for horizons 1 and 4, but discuss

results for other horizons in subsequent exercises.

Focusing first on Table 8, we find that both the EXNFCI and RTNFCI models (i.e., the

unrestricted models) tend to perform better than the QAR(1) model in the lower tail at

both horizons. In all cases, performance gains for R = 60 and 90 are larger than that for

R = 30, with the larger window sizes displaying statistical significance in all cases of the

lowest two reported α quantiles. In most cases, we also find significant deterioration in the

unrestricted models’ performance relative to the QAR(1) in the upper tail. For the most

part, the results in Table 9 mirror those in Table 8. There are a few exceptions, however.

In the lower tails, the unrestricted models tend to have the lowest relative average tick loss

for R = 30. Perhaps most notably, for some permutations of the upper tail forecasts, the

EXNFCI and RTNFCI models outperform the QAR(1) at a statistically significant level.

Recall that these results do not include the COVID-19 period; the reasons for which are

illustrated in Figure 5. Each panel gives the cumulative sum of the loss differentials between

two specified models for a given α-quantile and forecast horizons 1 and 4. The first, second,
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and third columns give the differentials between the QAR(1) and the EXNFCI, the QAR(1)

and the RTNFCI, and the EXNFCI and the RTNFCI models, respectively. The first, second,

and third rows give the differentials for α quantiles 0.05, 0.5, and 0.95, respectively. We

choose to report the results when the models are estimated using the recursive scheme and

R = 60. The first choice is due to the recursive scheme’s superiority over the rolling scheme

in the lower tails, while the second choice strikes a balance between using a larger window

size and maximizing the availability of forecast origins.18

The trends in the first two panels of the first row are unsurprisingly similar. Absent

the COVID-19 period, there is a clear and continued benefit to appending the EXNFCI or

RTNFCI to the QAR(1) model. In the COVID-19 period, the cumulative sum of the loss

differentials for both horizons in these two panels experience steep declines, suggesting that

the unrestricted models performed worse than the QAR(1). Moreover, the third panel of the

first row suggests that the RTNFCI performed slightly better than the EXNFCI for τ = 4,

whereas the two models performed similarly for τ = 1. Finally, reinforcing earlier findings,

the second and third rows of Figure 5 indicate that neither of the unrestricted models

provides performance advantages over the QAR(1) in the median and upper quantiles.

In the lower tail, it appears that some of the largest improvements in the RTNFCI model

occur near recessions, especially at the longer horizon. On the other hand, the differentials

between the QAR(1) and EXNFCI seem to change less predictably near recessions. To get

a better feel for this consider Figure 6. In the first panel, we plot the average percentage

change in relative tick loss when α = 0.05 at horizons ranging from 1 to 12 quarters ahead

of any recessionary period.19 On average we find that the RTNFCI model is more accurate

than the QAR(1) model for horizons roughly a year out from any recessionary period but

then deteriorates. However, the EXNFCI model does worse than the QAR(1) at every

horizon.20 Our findings suggest that the RTNFCI performs better than the EXNFCI at

18Specifically, when R = 90, the first origin takes place after the 1990-91 recession. In unreported results,
we find that using R = 90 gives similar results for overlapping forecast periods.

19We compute these results with an OLS regression where the LHS is the loss differentials between the
two models scaled by the average loss of the denominator model (noted in the legend) and the RHS is an
intercept and a recession dummy variable that is equal to 1 when a recession period is anywhere between
the forecast origin and target date. A little algebra shows that adding the resulting intercept and slope
coefficient gives the average relative percentage change in tick loss between the two models for forecasts
when the recession dummy is equal to 1.

20As can be seen in Figure 5, a large contributor to this outcome is the 1990-91 recession period, where
the NFCI model performs much worse than the QAR(1). In unreported results, we compute these results
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horizons less than 10 quarters leading into any recessionary period.

In the second panel of Figure 6, we report results from a comparable exercise but in the

context of predicting the likelihood of a recession rather than the lower tail of RGDP growth.

Specifically, we use maximum likelihood to estimate three Probit models: the baseline that

only includes an intercept and one lag of the current vintage of RGDP, one that adds one

lag of the current vintage of the NFCI, and one that adds one lag of the RTNFCI. Quality

of the predictions is evaluated using the area under the receiving operator characteristics

curve (AUROC).21 Briefly, the AUROC is a measure of the quality of the trade-off between

the true and the false positive rates of a model’s predictions of the likelihood of a recession.

A value greater than 50% means the model is better than a random guess, while one less

than 50% implies the model is worse. The panel indicates that all three models are an

improvement over simply guessing at the shortest horizons. Even so, the baseline quickly

loses predictive content, and the model including the EXNFCI loses most of its predictive

content after one year. In contrast, the RTNFCI model retains predictive content up to

nearly two years.22 This finding stands in sharp contrast to arguments made by Reichlin,

Ricco, and Hasenzagl (2020) that the NFCI has “little advanced information of recessions

beyond what is already included in real economic indicators.”

6 Conclusion

In this paper we emphasize the real-time nature of the growth-at-risk literature and do so in

two ways. First, we construct real-time vintages of the NFCI using the same methodology

of its authors, and demonstrate that these vintages possess similar characteristics to those

of their official counterpart. We then describe how to properly implement tests of equal

predictive ability between nested quantile regression models when the data are subject to

revision, and show that these tests display reasonable size and power properties in finite

samples. With these two tools in hand, we then use the unofficial real-time vintages, in

conjunction with the already available official vintages, to evaluate the out-of-sample pre-

dictive content of the NFCI while avoiding the look-ahead bias present in previous exercises

when origins before 1992 are excluded and find that the NFCI performs better than the QAR(1) for τ = 1, 2,
and 4.

21See Berge and Jordà (2011) for further discussion on ROC curves.
22We reach similar conclusions when using the diagonal elementary score of Bouallègue et al. (2019).
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of this nature. We find that accounting for the real-time nature of the monitoring process

does not significantly alter the results found in Adrian, Boyarchenko, and Giannone (2019).

Real-time quantile forecasts of the lower tail of U.S. RGDP growth are more accurate when

you include the NFCI, even when conditioning on lagged RGDP growth. Finally, despite

the fact that the real-time vintages exhibit more variability and are subject to revision, we

find evidence that the real-time vintages provide improved forecast accuracy leading into

recessions — precisely when monitoring downside risks is most important.
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Figure 1: Number of Series Available by Vintage Date
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Notes: This figure provides the number of series available for the first vintage of each year in our unofficial
NFCI as well as that of the hypothetical official NFCI vintages that would have been released before May
25, 2011. For a given vintage, series are only considered available if at least two years worth of observations
would have been released.
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Figure 2: NFCI 3-Month Average Vintage Comparisons
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Notes: This figure compares the 3-month averages of five different NFCI vintages. The 1988, 1996, and 2004
vintages are unofficial vintages that we constructed, while the 2012 and 2021 vintages are official vintages
produced by the NFCI curators.

Figure 3: Expost vs. Real-Time NFCI
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Notes: This figure compares a plot of a recent vintage of the NFCI (i.e., Expost), to a plot of the endpoints
of each consecutive NFCI vintage (i.e., Real-Time).
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Figure 4: Expected Losses, Power DGP2
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Notes: This figure plots the expected tick loss of the restricted and unrestricted models of the DGP2 power
simulations over a range of revision sizes. Each panel provides the results for a specified α-quantile.
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Figure 5: Cumulative Sum of Loss Differentials

QAR(1) vs EXNFCI, , = 0:05

1990 2000 2010 2020
-5

0

5

10

15

20
= = 1
= = 4

QAR(1) vs RTNFCI, , = 0:05

1990 2000 2010 2020

EXNFCI vs RTNFCI, , = 0:05

1990 2000 2010 2020

QAR(1) vs EXNFCI, , = 0:5

1990 2000 2010 2020
-10

-5

0

5
QAR(1) vs RTNFCI, , = 0:5

1990 2000 2010 2020

EXNFCI vs RTNFCI, , = 0:5

1990 2000 2010 2020

QAR(1) vs EXNFCI, , = 0:95

1990 2000 2010 2020
-3

-2

-1

0

1
QAR(1) vs RTNFCI, , = 0:95

1990 2000 2010 2020

EXNFCI vs RTNFCI, , = 0:95

1990 2000 2010 2020

Notes: Each subplot gives the cumulative sum of loss differentials between the specified models over the
forecast origins 1988Q1-2021Q2. For example, plots with the title “QAR(1) vs EXNFCI” give the cumulative
sum of loss differentials between the QAR(1) and EXNFCI models. We only report results from the recursive
window estimation scheme with a window size of R = 60. The first, second, and third rows of plots give the
results when α = 0.05, α = 0.5, and α = 0.95, respectively.
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Figure 6: Recession-Related Model Performance

1 2 3 4 5 6 7 8 9 10 11 12

Horizon (Quarters)

-80

-60

-40

-20

0

20

40

60

80

100

120

%
 C

ha
ng

e

Quantile Forecasting: Expected % Change in Loss during Recessions, by Horizon

EXNFCI/QAR(1)
RTNFCI/QAR(1)
RTNFCI/EXNFCI

1 2 3 4 5 6 7 8 9 10 11 12

Horizon (Quarters)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probit Recession Forecasting: AUROC, by Horizon

Base
EXNFCI
RTNFCI

Notes: In the first panel, each line represents the expected percentage change of the tick loss between the
two specified α = 0.05 GDP quantile forecasting models over a range of horizons. For example, for one-
step-ahead forecasts, the RTNFCI model is associated with ∼ 30% lower tick loss than in the QAR(1) and
EXNFCI models. Results are only reported for the recursive estimation scheme with a window size of R =
60. In the second panel, each line represents the AUROC values associated with each recession forecasting
model over a range of horizons.
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Table 1: 3-Month Averages of NFCI Vintages, Correlations

Jan-
88

Jan-
90

Jan-
92

Jan-
94

Jan-
96

Jan-
98

Jan-
00

Jan-
02

Jan-
04

Jan-
06

Jan-
08

Jan-
10

Jan-
12

Jan-
14

Jan-
16

Jan-
18

Jan-
20

Jan-88 1.00 1.00 0.98 0.92 0.95 0.91 0.93 0.94 0.94 0.94 0.93 0.91 0.92 0.92 0.92 0.93 0.93

Jan-90 1.00 0.97 0.91 0.95 0.90 0.92 0.94 0.93 0.94 0.93 0.92 0.92 0.92 0.92 0.93 0.93

Jan-92 1.00 0.98 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.97 0.98 0.97 0.97 0.97 0.96

Jan-94 1.00 0.98 1.00 0.98 0.97 0.98 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.97

Jan-96 1.00 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.97

Jan-98 1.00 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98

Jan-00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.98 0.98 0.97 0.96

Jan-02 1.00 1.00 1.00 1.00 0.98 0.98 0.98 0.98 0.97 0.97

Jan-04 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.98 0.97

Jan-06 1.00 1.00 0.99 0.99 0.99 0.98 0.98 0.98

Jan-08 1.00 0.99 0.99 0.98 0.98 0.97 0.97

Jan-10 1.00 0.99 1.00 1.00 0.99 0.99

Jan-12 1.00 1.00 1.00 0.99 0.98

Jan-14 1.00 1.00 1.00 0.99

Jan-16 1.00 1.00 0.99

Jan-18 1.00 1.00

Jan-20 1.00

Notes: This table provides the correlation coefficients between 3-month averages of NFCI vintages. For brevity,
we only include the first vintage of even years.
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Table 2: ANOVA (N = 60)

h = 1 h = 4

Treatment\α 0.05 0.1 0.5 0.9 0.95 0.05 0.1 0.5 0.9 0.95

Rolling 0.111* 0.053* -0.039* -0.148* -0.094* 0.061 0.102* -0.033* 0.014 0.011

(0.00) (0.01) (0.00) (0.00) (0.00) (0.09) (0.00) (0.01) (0.75) (0.87)

R = 60 -0.132 -0.049 0.022* 0.05 0.064 -0.193 -0.132 -0.017* -0.105 -0.156

(0.08) (0.66) (0.00) (0.08) (0.06) (0.66) (0.56) (0.01) (0.68) (0.84)

R = 90 -0.154* -0.115* -0.036* 0.033 0.012 -0.353* -0.232* -0.105* -0.171* -0.284*

(0.00) (0.00) (0.00) (0.13) (0.73) (0.00) (0.00) (0.00) (0.00) (0.00)

GDP -0.052 -0.032 -0.033* -0.09* -0.064* -0.034 -0.028 -0.028* -0.02 -0.005

(0.08) (0.09) (0.00) (0.00) (0.03) (0.34) (0.28) (0.03) (0.65) (0.94)

EXNFCI -0.578* -0.388* 0.007 0.047 0.077 -0.49 -0.456* 0.048* 0.113 0.135

(0.00) (0.00) (0.86) (0.19) (0.20) (0.22) (0.00) (0.02) (0.63) (0.97)

RTNFCI -0.54* -0.35* 0.019 0.036 0.072 -0.648* -0.539* 0.026 0.127* 0.155

(0.00) (0.00) (0.08) (0.19) (0.09) (0.00) (0.00) (0.06) (0.03) (0.08)

EXNFCI*Cal 0.082 0.038 0.006 -0.004 0.01 0.072 0.052 0.015 -0.005 -0.058

(0.08) (0.20) (0.56) (0.89) (0.82) (0.20) (0.20) (0.48) (0.94) (0.58)

RTNFCI*Cal 0.002 -0.005 -0.003 -0.008 -0.01 0.07 0.063 0.018 0.012 0.016

(0.96) (0.87) (0.79) (0.78) (0.82) (0.22) (0.13) (0.37) (0.87) (0.88)

Notes: This table provides the coefficients and p-values from an ANOVA regression on the natural
logarithm of mean tick loss. Coefficients represent the percentage change in mean loss associated with
the indicator. Asterisks indicate statistically significant values at the 5% level.
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Table 3: Size Tests, DGP1

Θ-based Ω-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.01 0.01 0.01 0.01 0.01 0.01 0.06 0.04 0.03 0.02 0.01 0.01

500 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.04 0.03 0.03 0.02 0.02

1000 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.03 0.03

0.1 100 0.02 0.01 0.02 0.02 0.01 0.01 0.05 0.04 0.03 0.02 0.02 0.02

500 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.04 0.04 0.04 0.03 0.03

1000 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.04

0.5 100 0.03 0.03 0.02 0.03 0.03 0.03 0.06 0.04 0.03 0.04 0.03 0.03

500 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.04 0.04 0.04 0.04

1000 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.04

Ω̂-based Ŝdd-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.11 0.10 0.09 0.10 0.09 0.08 0.03 0.03 0.04 0.16 0.22 0.29

500 0.10 0.09 0.08 0.08 0.07 0.06 0.11 0.16 0.22 0.41 0.44 0.45

1000 0.09 0.09 0.07 0.07 0.06 0.06 0.20 0.27 0.33 0.46 0.47 0.47

0.1 100 0.10 0.10 0.10 0.09 0.08 0.07 0.04 0.05 0.08 0.23 0.30 0.35

500 0.10 0.09 0.08 0.07 0.07 0.06 0.17 0.23 0.29 0.44 0.46 0.46

1000 0.09 0.08 0.07 0.06 0.06 0.06 0.26 0.33 0.38 0.47 0.48 0.48

0.5 100 0.11 0.10 0.09 0.08 0.07 0.06 0.08 0.11 0.16 0.34 0.39 0.42

500 0.08 0.07 0.07 0.06 0.06 0.05 0.25 0.31 0.36 0.44 0.45 0.45

1000 0.07 0.07 0.07 0.06 0.06 0.05 0.34 0.38 0.41 0.45 0.45 0.46

Notes: The DGP is delineated in Section 3.2. For size tests, δ1 = 0. α repre-
sents the quantile that each model is forecasting. R and P give the number of
observations in the first forecast origin and number of forecasts, respectively. c
defines the revision size. Θ, Ω, Ω̂, and Ŝdd are the simulation-based, theoreti-
cal, non-parametric, and sample variances, respectively. All tests are compared
against one-sided standard normal critical values. The number of Monte Carlo
replications is 5000, and the nominal size is 5%.
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Table 4: Power Tests, DGP1

Θ-based Ω-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.15 0.23 0.41 0.28 0.43 0.67 0.50 0.59 0.74 0.33 0.39 0.53

500 0.52 0.81 0.98 0.89 0.99 1.00 0.92 0.99 1.00 0.94 0.99 1.00

1000 0.82 0.98 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

0.1 100 0.20 0.33 0.58 0.38 0.60 0.86 0.62 0.75 0.89 0.50 0.63 0.81

500 0.70 0.95 1.00 0.98 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00

1000 0.95 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99

0.5 100 0.40 0.63 0.89 0.70 0.91 0.99 0.87 0.96 1.00 0.89 0.97 1.00

500 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99

Ω̂-based Ŝdd-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.55 0.69 0.84 0.69 0.80 0.90 0.21 0.34 0.58 0.54 0.79 0.96

500 0.97 1.00 1.00 1.00 1.00 1.00 0.74 0.94 1.00 0.99 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00

0.1 100 0.71 0.85 0.95 0.84 0.92 0.97 0.30 0.51 0.78 0.73 0.93 0.99

500 0.99 1.00 1.00 1.00 1.00 1.00 0.88 0.99 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 0.99

0.5 100 0.91 0.98 1.00 0.97 0.99 1.00 0.62 0.85 0.98 0.95 1.00 1.00

500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 0.99

Notes: See the notes to Table 3. For power tests, δ1 = 0.4.
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Table 5: Size Tests, DGP2

Θ-based Ω-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.03 0.02 0.02 0.04 0.04 0.03 0.19 0.14 0.10 0.12 0.09 0.08

500 0.03 0.03 0.03 0.04 0.04 0.04 0.11 0.08 0.06 0.07 0.05 0.05

1000 0.03 0.03 0.03 0.04 0.04 0.04 0.08 0.06 0.05 0.06 0.06 0.05

0.1 100 0.03 0.03 0.03 0.05 0.05 0.05 0.19 0.15 0.11 0.12 0.10 0.08

500 0.03 0.03 0.03 0.05 0.05 0.05 0.11 0.08 0.07 0.08 0.07 0.07

1000 0.04 0.04 0.04 0.05 0.05 0.05 0.08 0.07 0.06 0.07 0.06 0.06

0.5 100 0.05 0.05 0.05 0.08 0.08 0.08 0.21 0.17 0.12 0.16 0.14 0.12

500 0.05 0.05 0.05 0.07 0.07 0.07 0.12 0.10 0.08 0.09 0.08 0.08

1000 0.05 0.05 0.05 0.06 0.06 0.06 0.10 0.08 0.07 0.08 0.08 0.07

Ω̂-based Ŝdd-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.07 0.07 0.06 0.11 0.11 0.11 0.03 0.03 0.03 0.12 0.16 0.21

500 0.09 0.09 0.10 0.12 0.11 0.11 0.06 0.08 0.10 0.30 0.35 0.40

1000 0.10 0.10 0.11 0.11 0.10 0.10 0.10 0.13 0.17 0.38 0.43 0.45

0.1 100 0.07 0.07 0.07 0.13 0.13 0.12 0.04 0.04 0.05 0.19 0.25 0.31

500 0.09 0.09 0.09 0.11 0.10 0.09 0.09 0.11 0.14 0.37 0.42 0.46

1000 0.10 0.10 0.09 0.09 0.08 0.08 0.14 0.18 0.23 0.43 0.47 0.49

0.5 100 0.09 0.08 0.09 0.14 0.15 0.12 0.10 0.11 0.11 0.35 0.41 0.47

500 0.11 0.12 0.10 0.10 0.08 0.07 0.18 0.22 0.28 0.49 0.52 0.53

1000 0.10 0.10 0.08 0.07 0.07 0.06 0.24 0.28 0.32 0.50 0.52 0.52

Notes: See the notes to Table 3. For size tests, δ2 = 0.
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Table 6: Power Tests, DGP2

Θ-based Ω-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.03 0.03 0.03 0.01 0.00 0.00 0.30 0.28 0.26 0.08 0.05 0.03

500 0.05 0.05 0.05 0.00 0.00 0.00 0.38 0.37 0.38 0.03 0.01 0.00

1000 0.06 0.06 0.06 0.00 0.00 0.00 0.43 0.42 0.44 0.01 0.00 0.00

0.1 100 0.05 0.04 0.04 0.01 0.01 0.00 0.33 0.32 0.33 0.09 0.05 0.02

500 0.06 0.07 0.08 0.00 0.00 0.00 0.44 0.45 0.48 0.03 0.01 0.00

1000 0.08 0.09 0.12 0.00 0.00 0.00 0.50 0.51 0.54 0.01 0.00 0.00

0.5 100 0.07 0.08 0.11 0.02 0.01 0.00 0.44 0.46 0.51 0.12 0.08 0.05

500 0.12 0.18 0.28 0.00 0.00 0.00 0.60 0.66 0.75 0.05 0.02 0.00

1000 0.18 0.29 0.45 0.00 0.00 0.00 0.70 0.78 0.87 0.02 0.00 0.00

Ω̂-based Ŝdd-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.15 0.16 0.19 0.10 0.09 0.07 0.08 0.07 0.07 0.06 0.05 0.04

500 0.32 0.34 0.35 0.06 0.03 0.01 0.11 0.12 0.13 0.02 0.01 0.00

1000 0.39 0.38 0.39 0.03 0.01 0.00 0.12 0.13 0.15 0.01 0.00 0.00

0.1 100 0.19 0.22 0.26 0.12 0.10 0.06 0.09 0.10 0.11 0.07 0.07 0.05

500 0.39 0.40 0.42 0.06 0.02 0.01 0.13 0.15 0.19 0.02 0.01 0.00

1000 0.44 0.45 0.47 0.02 0.00 0.00 0.17 0.19 0.24 0.01 0.00 0.00

0.5 100 0.30 0.35 0.42 0.17 0.14 0.08 0.16 0.19 0.23 0.12 0.10 0.07

500 0.52 0.57 0.65 0.08 0.03 0.01 0.26 0.34 0.46 0.04 0.02 0.00

1000 0.62 0.70 0.79 0.03 0.00 0.00 0.35 0.47 0.63 0.01 0.00 0.00

Notes: See the notes to Table 3. For power tests, δ2 = -1.6.
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Table 7: Two-Sided Power Tests, DGP2

Θ-based Ω-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.07 0.07 0.06 0.09 0.10 0.13 0.69 0.66 0.61 0.42 0.41 0.42

500 0.06 0.05 0.05 0.18 0.24 0.35 0.72 0.66 0.61 0.63 0.67 0.76

1000 0.06 0.05 0.05 0.30 0.42 0.59 0.73 0.67 0.64 0.77 0.86 0.93

0.1 100 0.06 0.06 0.06 0.09 0.10 0.13 0.68 0.66 0.62 0.45 0.43 0.46

500 0.06 0.06 0.06 0.21 0.29 0.43 0.74 0.68 0.65 0.69 0.75 0.84

1000 0.06 0.06 0.08 0.36 0.53 0.74 0.76 0.70 0.67 0.83 0.91 0.96

0.5 100 0.06 0.06 0.07 0.08 0.09 0.13 0.71 0.69 0.66 0.50 0.49 0.50

500 0.08 0.12 0.19 0.19 0.29 0.47 0.79 0.77 0.79 0.73 0.77 0.86

1000 0.11 0.19 0.34 0.34 0.55 0.78 0.83 0.83 0.87 0.85 0.92 0.96

Ω̂-based Ŝdd-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.26 0.26 0.28 0.31 0.33 0.38 0.07 0.08 0.09 0.22 0.34 0.47

500 0.48 0.46 0.43 0.68 0.73 0.84 0.10 0.11 0.12 0.56 0.71 0.86

1000 0.55 0.50 0.47 0.85 0.91 0.96 0.11 0.12 0.14 0.73 0.88 0.96

0.1 100 0.28 0.29 0.32 0.34 0.37 0.41 0.08 0.09 0.12 0.28 0.41 0.53

500 0.51 0.47 0.46 0.75 0.80 0.88 0.12 0.13 0.16 0.62 0.77 0.90

1000 0.57 0.52 0.49 0.88 0.94 0.98 0.14 0.15 0.19 0.78 0.92 0.98

0.5 100 0.32 0.37 0.41 0.38 0.39 0.42 0.15 0.18 0.20 0.40 0.48 0.56

500 0.56 0.57 0.63 0.76 0.78 0.87 0.22 0.29 0.39 0.65 0.76 0.89

1000 0.65 0.69 0.76 0.88 0.93 0.96 0.29 0.40 0.55 0.78 0.92 0.97

Notes: See the notes to Table 6. All tests are compared against two-sided
standard normal critical values.
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Table 8: CM Test of Equal Tick Loss, Recursive

h = 1 h = 4

Model R \ α 0.05 0.1 0.5 0.9 0.95 0.05 0.1 0.5 0.9 0.95

EXNFCI 30 -0.101* -0.179* 0.004 -0.057* 0.005* 0.026 -0.108 0.015* 0.068* 0.15*

(0.00) (0.00) (0.36) (0.00) (0.00) (0.51) (0.06) (0.00) (0.03) (0.00)

60 -0.169* -0.231* 0.013 0.015 0.013* -0.079* -0.142* 0.081* 0.036* 0.062

(0.00) (0.00) (0.14) (0.52) (0.01) (0.00) (0.00) (0.00) (0.00) (0.15)

90 -0.132* -0.207* -0.028* 0.014 0.024* -0.134* -0.172* 0.045 -0.01* 0.1*

(0.00) (0.00) (0.00) (0.55) (0.00) (0.00) (0.00) (0.19) (0.00) (0.01)

RTNFCI 30 -0.104* -0.152* -0.017 -0.042* 0.008 -0.104* -0.215* -0.029 0.073* 0.168*

(0.00) (0.00) (0.27) (0.01) (0.20) (0.00) (0.00) (0.48) (0.00) (0.00)

60 -0.133* -0.194* 0.039 0.019 0.023* -0.169* -0.231* 0.075 0.053* 0.051

(0.00) (0.00) (0.18) (0.60) (0.00) (0.00) (0.00) (0.22) (0.01) (0.43)

90 -0.099* -0.177* -0.018 -0.002 0.027* -0.18* -0.227* 0.016 -0.021* 0.097*

(0.00) (0.00) (0.27) (0.93) (0.00) (0.00) (0.00) (0.71) (0.01) (0.03)

Notes: This table gives the percentage change in the average tick loss when lagged EXNFCI or RTNFCI
is added to a baseline QAR(1) model on RGDP growth (e.g., -0.101 denotes roughly a 10% lower average
tick loss in the unrestricted model than in the restricted model). P-values associated with the two-sided
OOS-t tests are provided in parenthesis. Asterisks indicate statistical significance at the 5% level. Results
are reported for the horizons h = 1 and h = 4, the quantiles α ∈ {0.05, 0.1, 0.5, 0.9, 0.95}, and initial
window sizes of R ∈ {30, 60, 90}. All models are estimated with a recursive scheme.

Table 9: CM Test of Equal Tick Loss, Rolling

h = 1 h = 4

Model R \ α 0.05 0.1 0.5 0.9 0.95 0.05 0.1 0.5 0.9 0.95

EXNFCI 30 -0.271* -0.434* 0.007 0.044* 0.288* -0.107* -0.192* 0.016* 0.889* 1.105*

(0.00) (0.00) (0.27) (0.00) (0.00) (0.02) (0.00) (0.01) (0.00) (0.00)

60 -0.046* -0.332* -0.002 -0.107* -0.072* -0.152* -0.234* -0.026 -0.07* -0.143

(0.00) (0.00) (0.49) (0.00) (0.00) (0.00) (0.00) (0.13) (0.00) (0.24)

90 -0.231* -0.161* -0.055* 0.013 -0.015 -0.226* -0.267* -0.02 -0.093* 0.016

(0.00) (0.00) (0.00) (0.43) (0.13) (0.00) (0.00) (0.17) (0.00) (0.91)

RTNFCI 30 -0.572* -0.445* 0.014 -0.025 0.228* -0.07* -0.117* 0.046 0.8* 1.015*

(0.00) (0.00) (0.17) (0.12) (0.00) (0.01) (0.00) (0.06) (0.00) (0.01)

60 -0.038* -0.323* 0.01 -0.077 -0.051* -0.139* -0.197* -0.037 -0.004 -0.077

(0.00) (0.00) (0.57) (0.11) (0.00) (0.00) (0.00) (0.39) (0.89) (0.63)

90 -0.195* -0.211* -0.031 0.015 -0.015* -0.162* -0.195* -0.014 -0.08* 0.02

(0.00) (0.00) (0.06) (0.37) (0.00) (0.00) (0.00) (0.64) (0.00) (0.88)

Notes: See the notes to Table 8. All models are estimated with a rolling scheme.
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Appendix

A NFCI Series Availability

Financial Indicator Mnemonic Start Date Frequency RTNFCI

10-yr Constant Maturity Treasury yield D10 08-Jan-1971 W

10-yr Interest Rate Swap/Treasury yield spread SWAP10 03-Apr-1987 W

10-yr/2-yr Treasury yield spread SPR210 20-Aug-1971 W

1-mo. Asset-backed/Financial commercial paper
spread

ABCP 05-Jan-2001 W

1-mo. BofAML Option Volatility Estimate Index VOL1 08-Apr-1988 W

1-mo. Nonfinancial commercial paper A2P2/AA
credit spread

A2P2 10-Jan-1997 W

1-yr/1-mo. LIBOR spread TERM 10-Jan-1986 W

20-yr Treasury/State & Local Government 20-yr
GO bond spread

MBOND 08-Jan-1971 W

2-yr Interest Rate Swap/Treasury yield spread SWAP2 03-Apr-1987 W

2-yr/3-mo. Treasury yield spread SPR23M 08-Jan-1971 W

30-yr Conforming Mortgage/10-yr Treasury yield
spread

MINC 02-Apr-1971 W

30-yr Jumbo/Conforming fixed rate mortgage
spread

JINC 12-Jun-1998 W

3-mo. BofAML Swaption Volatility Estimate In-
dex

VOL3 06-Dec-1996 W

3-mo. Eurodollar spread (LIBID-Treasury) LIBID 08-Jan-1971 W

3-mo. Eurodollar, 10-yr/3-mo. swap, 2-yr and
10-yr Treasury Open Interest

OINT 23-Jun-1995 W

3-mo. Financial commercial paper/Treasury bill
spread

CBILL 08-Jan-1971 W

3-mo. Overnight Indexed Swap (OIS)/Treasury
yield spread

SWAP3M 19-Sep-2003 W

3-mo. TED spread (LIBOR-Treasury) TED 06-Jun-1980 W

3-mo./1-wk AA Financial commercial paper
spread

CTERM 10-Jan-1997 W

3-mo./1-wk Treasury Repo spread RTERM 24-May-1991 W

ABA Value of Delinquent Bank Card Credit
Loans/Total Loans

DBC 26-Feb-1999 M

ABA Value of Delinquent Consumer Loans/Total
Loans

DCLOSE 26-Feb-1999 M

ABA Value of Delinquent Home Equity
Loans/Total Loans

DHE 26-Feb-1999 M

ABA Value of Delinquent Noncard Revolving
Credit Loans/Total Loans

DOTH 26-Feb-1999 M X

Advanced Foreign Economies Trade-weighted US
Dollar Value Index

USD 12-Jan-1973 W

Agency MBS Repo Delivery Failures Rate FAILSMBS 07-Oct-1994 W
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Agency Repo Delivery Failures Rate FAILSA 07-Oct-1994 W

BofAML 3-5 yr AAA CMBS OAS spread CMBS 02-Jan-1998 W

BofAML High Yield/Moody’s Baa corporate
bond yield spread

HY 07-Nov-1986 W

BofAML Home Equity ABS/MBS yield spread ABSSPREAD 05-Jul-1991 W

Bond Market Association Municipal Swap/20-yr
Treasury yield spread

MSWAP 07-Jul-1989 W

Broker-dealer Debit Balances in Margin Accounts BDG 29-Jan-1971 M

CBOE Market Volatility Index VIX VIX 05-Jan-1990 W

CMBS Issuance (Relative to 12-mo. MA) CMBSI 28-Dec-1990 M X

CME E-mini S&P Futures Market Depth EQUITYLIQ 04-Jan-2008 W X

CME Eurodollar/CBOT T-Note Futures Market
Depth

RATELIQ 01-Feb-2008 W X

COMEX Gold/NYMEX wTI Futures Market
Depth

COMMODLIQ 04-Jan-2008 W X

Commercial Bank 24-mo. Personal Loan/2-yr
Treasury yield spread

CBPER 05-May-1972 Q

Commercial Bank 48-mo. New Car Loan/2-yr
Treasury yield spread

CBCAR 05-May-1972 Q

Commercial Bank C&I Loans/Total Assets CITA 02-Mar-1973 M

Commercial Bank Consumer Loans/Total Assets CONTA 02-Mar-1973 M

Commercial Bank Noncurrent/Total Loans NCL 28-Jun-1985 Q X

Commercial Bank Real Estate Loans/Total Assets RTA 02-Mar-1973 M

Commercial Bank Securities in Bank Credit/Total
Assets

STA 02-Mar-1973 M

Commercial Bank Total Unused C&I Loan Com-
mitments/Total Assets

DCOMM 29-Jun-1990 Q X

Commercial Paper Outstanding CG 10-Nov-1995 W

Consumer Credit Outstanding CCG 29-Jan-1971 M

CoreLogic National House Price Index LPH 02-Apr-1976 M

Corporate Securities Repo Delivery Failures Rate FAILSC 05-Oct-2001 W

Counterparty Risk Index (formerly maintained by
Credit Derivatives Research)

CPR 13-Sep-2002 W X

FDIC Volatile Bank Liabilities GVL 01-Jul-1994 Q X

Fed funds and Reverse Repurchase Agree-
ments/Total Assets of Commercial Banks

ITA 30-Mar-1973 M

Fed Funds/Overnight Agency Repo rate spread REPOA 24-May-1991 W

Fed Funds/Overnight MBS Repo rate spread REPOMORT 24-May-1991 W

Fed Funds/Overnight Treasury Repo rate spread REPO 24-May-1991 W

Federal, state, and local debt outstanding/GDP STLOC 02-Apr-1971 Q

Finance Company Owned & Managed Receivables FG 29-Jan-1971 M

FRB Commercial Property Price Index CPH 02-Apr-1971 Q

FRB Senior Loan Officer Survey: Increasing
spreads on Large C&I Loans

SPCILARGE 13-Jul-1990 Q

FRB Senior Loan Officer Survey: Increasing
spreads on Small C&I Loans

SPCISMALL 13-Jul-1990 Q

FRB Senior Loan Officer Survey: Tightening
Standards on CRE Loans

CRE 12-Oct-1990 Q
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FRB Senior Loan Officer Survey: Tightening
Standards on Large C&I Loans

CILARGE 13-Jul-1990 Q

FRB Senior Loan Officer Survey: Tightening
Standards on RRE Loans

RRE 12-Oct-1990 Q

FRB Senior Loan Officer Survey: Tightening
Standards on Small C&I Loans

CISMALL 13-Jul-1990 Q

FRB Senior Loan Officer Survey: willingness to
Lend to Consumers

CWILL 15-Jan-1971 Q

Household debt outstanding/PCE Durables and
Residential Investment

HH 02-Apr-1971 Q

ICE BofAML ABS/5-yr Treasury yield spread CTABS 01-Feb-1991 M

ICE BofAML Financial/Corporate Credit bond
spread

CTF 31-Jan-1997 M

ICE BofAML Mortgage Master MBS/10-year
Treasury yield spread

CTMBS 27-Jan-1989 M

Markit High Yield (HY) 5-yr Senior CDS Index LHY 07-Jan-2005 W X

Markit Investment Grade (IG) 5-yr Senior CDS
Index

LIG 01-Oct-2004 W X

MBA Serious Delinquencies MDQ 30-Jun-1972 Q

Money Stock: MZM MG 01-Mar-1974 M

Moody’s Baa corporate bond/10-yr Treasury
yield spread

BAA 03-Jan-1986 W

NACM Survey of Credit Managers: Credit Man-
ager’s Index

NACMM 15-Feb-2002 M

Net Notional Value of Credit Derivatives5 DNET 07-Nov-2008 W X

New State & Local Government Debt Issues (Rel-
ative to 12-mo.h MA)

MBONDGR 27-Feb-2004 M

New US Corporate Debt Issuance (Relative to 12-
mo. MA)

BONDGR 01-Jan-1988 M

New US Corporate Equity Issuance (Relative to
12-mo. MA)

STKGR 01-Jan-1988 M

NFIB Survey: Credit Harder to Get SMALL 02-Nov-1973 M

Nonfinancial business debt outstanding/GDP6 NFC 02-Apr-1971 Q

Nonmortgage ABS Issuance (Relative to 12-mo.
MA)

ABSI 29-Dec-2000 M X

On-the-run vs. Off-the-run 10-yr Treasury liquid-
ity premium

MLIQ10 04-Jan-1985 W

Repo Market Volume (Repurchases+Reverse Re-
purchases of primary dealers)

REPOGR 07-Oct-1994 W

S&P 500 Financials/S&P 500 Price Index (Rela-
tive to 2-yr MA)

FINS 06-Sep-1991 W

S&P 500, NASDAQ, and NYSE Market Capital-
ization/GDP

MCAP 28-Jun-1985 Q

S&P 500, S&P 500 mini, NASDAQ 100, NASDAQ
mini Open Interest

OEQ 24-Sep-1999 W

S&P US Bankcard Credit Card: 3-mo. Delin-
quency Rate

CCDQ 28-Feb-1992 M

S&P US Bankcard Credit Card: Excess Rate
Spread

CCINC 31-Jan-1992 M
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S&P US Bankcard Credit Card: Receivables Out-
standing

CRG 28-Feb-1992 M

Total Agency and GSE Assets/GDP GSE 30-Dec-1983 Q

Total Assets of ABS issuers/GDP TABS 30-Dec-1983 Q

Total Assets of Broker-dealers/GDP SBD 02-Apr-1971 Q

Total Assets of Finance Companies/GDP FC 02-Apr-1971 Q

Total Assets of Funding Corporations/GDP FCORP 02-Apr-1971 Q

Total Assets of Insurance Companies/GDP INS 02-Apr-1971 Q

Total Assets of Pension Funds/GDP PENS 02-Apr-1971 Q

Total MBS Issuance (Relative to 12-mo. MA) MBSI 29-Dec-2000 M X

Total Money Market Mutual Fund Assets/Total
Long-term Fund Assets

MMF 28-Dec-1984 M

Total REIT Assets/GDP REIT 02-Apr-1971 Q

Treasury Repo Delivery Fails Rate FAILS 07-Oct-1994 W

UM Household Survey: Auto Credit Conditions
Good/Bad spread

CARSPREAD 24-Feb-1978 M

UM Household Survey: Durable Goods Credit
Conditions Good/Bad spread

DURSPREAD 27-Jan-1978 M

UM Household Survey: Mortgage Credit Condi-
tions Good/Bad spread

HOUSSPREAD 24-Feb-1978 M

wilshire 5000 Stock Price Index W500 29-Jan-1971 W

CBOE Crude Oil Volatility Index, OVX SPOVX 18-May-2007 W

Notes: This table lists each financial indicator in the NFCI, as well as its mnemonic, start date, frequency, and
whether it is excluded from the RTNFCI (denoted with an X). There are 106 listed series due to the removal and
inclusion of series MBOND and SPOVX after the initial release of the NFCI, respectively. The original series
with mnemonics DBC, DCLOSE, and DHE were replaced with the quarterly FRED series DRCCLT100S,
DRCLACBS, and DRSREACBS in the RTNFCI. For more information on these indicators, see Brave and
Butters (2011).

B Expected Tick Loss and F

Here we derive the population-level expected tick loss E(L(û
(α)
2,t+1(t′)))|β̂2=β∗2

with an eye

towards deriving F explicitly. The expected tick loss proves useful when we discuss the

test’s power in Section 4. For this reason, we allow β2,2 to be non-zero (i.e., equation (3) is

augmented by δ2zt) and hence z has predictive content for the α quantile given y.
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Recall that the forecast error is given by

û
(α)
2,t+1(t′) = yt+1(t+ 1)− x′2,t(t)β̂2

= (yt+1 − x′2,tβ∗2)− (yt+1 − yt+1(t+ 1)) + (x′2,tβ
∗
2 − x′2,t(t)β̂2)

= u
(α)
2,t+1 − (yt+1 − yt+1(t+ 1)) + (x′2,tβ

∗
2 − x′2,t(t)β̂2)

= εt+1 − σεΦ−1(α)− (yt+1 − yt+1(t+ 1)) + (x′2,tβ
∗
2 − x′2,t(t)β̂2)

= εt+1 − σεΦ−1(α)− c+ (x′2,tβ
∗
2 − x′2,t(t)β̂2).

Since εt+1 ∼ N(0, σ2
ε) and independent of x2,t(t), we know u

(α)
2,t+1 ∼ N(µ

(α)
t , σ2

ε |x′2,t(t)),

where µ
(α)
t = −σεΦ−1(α)−c+(x′2,tβ

∗
2−x′2,t(t)β̂2). The conditional normality is important be-

cause it allows us to also delineate the conditional expected tick loss E(L(û
(α)
2,t+1(t′))|x2,t(t)),

which proves useful when deriving F . The conditionally expected tick loss is

E(L(û
(α)
2,t+1(t′))|x2,t(t)) = E((α− 1(û

(α)
2,t+1(t′) < 0))û

(α)
2,t+1(t′)|x2,t(t))

= αE(û
(α)
2,t+1(t′)|x2,t(t))− E(û

(α)
2,t+1(t′)1(û

(α)
2,t+1(t′) < 0)|x2,t(t)).

The first term is simply αµ
(α)
t . The second term is the expectation of a rectified Gaus-

sian variable, which can be rewritten as E(û
(α)
2,t+1(t′)|û(α)

2,t+1(t′) < 0, x2,t(t))P (û
(α)
2,t+1(t′) <

0|x2,t(t)). Notice that (û
(α)
2,t+1(t′)|û(α)

2,t+1(t′) < 0, x2,t(t)) follows a conditionally normal dis-

tribution with the upper tail truncated and thus has expectation µ
(α)
t − σε

φ(−µ
(α)
t
σε
|x2,t(t))

Φ(−µ
(α)
t
σε
|x2,t(t))

.

P (û
(α)
2,t+1(t′) < 0|x2,t(t)) = Φ(−µ

(α)
t
σε
|x2,t(t)), and thus E(û

(α)
2,t+1(t′)1(û

(α)
2,t+1(t′) < 0)|x2,t(t)) =

µ
(α)
t Φ(−µ

(α)
t
σε
|x2,t(t))− σεφ(−µ

(α)
t
σε
|x2,t(t)). Putting all terms together we obtain

E(L(û
(α)
2,t+1(t′))|x2,t(t)) = µ

(α)
t (α− Φ(−µ

(α)
t

σε
|x2,t(t))) + σεφ(−µ

(α)
t

σε
|x2,t(t)).

The unconditional expected loss, evaluated at the population parameter β̂2 = β∗2 , then

simplifies to

EL(û
(α)
2,t+1(t′))|β̂2=β∗2

= µ(α)(α− Φ(−µ
(α)

σε
)) + σεφ(−µ

(α)

σε
), (B.1)

where µ(α) = −σεΦ−1(α)+c(δ1−1) and hence the expected loss depends nonlinearly on the

magnitude of the revision c, an issue that can lead to power of the test arising in unexpected

directions — a point we reemphasize in the Monte Carlo section.
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To derive F2, it’s useful to note that the conditional expected loss is continuously

differentiable in β2. Hence, we interchange the differential and unconditional expectation

operators to obtain

F2 = E[∂E(L(û
(α)
2,t+1(t′))|x2,t(t))/∂β̂2]|β̂2=β∗2

= α∂µ
(α)
t /∂β̂2 − Φ(−µ

(α)
t

σε
|x2,t(t)))∂µ

(α)
t /∂β̂2

−µ(α)
t ∂Φ(−µ

(α)
t

σε
|x2,t(t)))/∂β̂2 + σε∂φ(−µ

(α)
t

σε
|x2,t(t))/∂β̂2]|β̂2=β∗2

= E[−αx2,t(t) + Φ(−µ
(α)
t

σε
|x2,t(t)))x2,t(t)

−µ
(α)
t

σε
φ(−µ

(α)
t

σε
|x2,t(t))x

′
2,t(t) + φ′(−µ

(α)
t

σε
|x2,t(t))x

′
2,t(t)]|β̂2=β∗2

= −E(α− 1(û2,t+1(t′) < 0))x′2,t(t),

where φ′(.) denotes the derivative of the standard normal PDF. In the fourth equality, that

the latter two right-hand-side terms cancel, is based on straightforward algebra associated

with a standard normal density. Given F2, F = (F1,−F2) can be obtained by recalling that

x1,t(t) = J ′x2,t(t) and under the null û2,t+1(t′) = û1,t+1(t′).
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C Monte Carlo Simulation Tables

Table C1: Two-Sided Size Tests, DGP1

Θ-based Ω-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.07 0.08 0.08 0.07 0.07 0.07 0.24 0.19 0.16 0.10 0.09 0.08

500 0.07 0.07 0.07 0.06 0.06 0.06 0.12 0.10 0.09 0.07 0.06 0.06

1000 0.07 0.07 0.06 0.06 0.06 0.05 0.11 0.09 0.09 0.06 0.06 0.05

0.1 100 0.08 0.08 0.08 0.07 0.07 0.07 0.19 0.16 0.14 0.09 0.08 0.07

500 0.07 0.07 0.07 0.06 0.06 0.06 0.11 0.10 0.09 0.07 0.07 0.06

1000 0.06 0.07 0.07 0.05 0.06 0.06 0.09 0.08 0.08 0.06 0.06 0.06

0.5 100 0.07 0.07 0.07 0.06 0.06 0.06 0.14 0.11 0.09 0.07 0.06 0.05

500 0.07 0.06 0.06 0.06 0.05 0.05 0.10 0.09 0.07 0.06 0.06 0.06

1000 0.07 0.06 0.06 0.05 0.05 0.05 0.08 0.07 0.07 0.06 0.06 0.06

Ω̂-based Ŝdd-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.28 0.25 0.21 0.17 0.14 0.10 0.08 0.14 0.23 0.39 0.55 0.69

500 0.17 0.13 0.10 0.08 0.07 0.06 0.27 0.42 0.57 0.84 0.89 0.91

1000 0.13 0.10 0.08 0.08 0.07 0.06 0.46 0.61 0.73 0.91 0.93 0.94

0.1 100 0.24 0.22 0.18 0.14 0.11 0.09 0.10 0.19 0.31 0.52 0.68 0.78

500 0.15 0.12 0.09 0.08 0.07 0.06 0.39 0.54 0.67 0.89 0.92 0.92

1000 0.10 0.09 0.08 0.07 0.06 0.06 0.56 0.71 0.81 0.94 0.94 0.95

0.5 100 0.18 0.15 0.11 0.09 0.07 0.06 0.21 0.31 0.44 0.72 0.83 0.87

500 0.09 0.08 0.07 0.06 0.06 0.05 0.57 0.73 0.81 0.93 0.94 0.95

1000 0.07 0.07 0.06 0.06 0.06 0.05 0.75 0.84 0.89 0.96 0.96 0.97

Notes: See the notes to Table 3. All tests are compared against two-sided
standard normal critical values.
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Table C2: Two-Sided Power Tests, DGP1

Θ-based Ω-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.10 0.16 0.29 0.19 0.32 0.55 0.50 0.54 0.68 0.25 0.28 0.38

500 0.40 0.70 0.95 0.79 0.97 1.00 0.91 0.98 1.00 0.89 0.97 1.00

1000 0.72 0.96 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

0.1 100 0.13 0.23 0.45 0.27 0.47 0.75 0.61 0.71 0.85 0.41 0.51 0.69

500 0.58 0.89 1.00 0.94 1.00 1.00 0.97 1.00 1.00 0.99 1.00 1.00

1000 0.89 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99

0.5 100 0.29 0.50 0.81 0.57 0.82 0.98 0.84 0.94 0.99 0.83 0.94 0.99

500 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1000 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99

Ω̂-based Ŝdd-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.61 0.69 0.82 0.67 0.76 0.85 0.12 0.23 0.45 0.42 0.71 0.93

500 0.97 1.00 1.00 1.00 1.00 1.00 0.63 0.89 0.99 0.99 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.99 1.00 1.00 1.00 1.00

0.1 100 0.73 0.83 0.94 0.81 0.89 0.95 0.19 0.38 0.68 0.63 0.89 0.99

500 0.99 1.00 1.00 1.00 1.00 1.00 0.82 0.98 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 0.99 0.98 1.00 1.00 1.00 1.00 0.99

0.5 100 0.89 0.97 1.00 0.96 0.98 1.00 0.50 0.77 0.97 0.92 1.00 1.00

500 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

1000 1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 0.99

Notes: See the notes to Table 4. All tests are compared against two-sided
standard normal critical values.
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Table C3: Two-Sided Size Tests, DGP2

Θ-based Ω-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.06 0.07 0.07 0.06 0.06 0.06 0.52 0.44 0.37 0.20 0.15 0.12

500 0.07 0.07 0.07 0.06 0.06 0.06 0.25 0.19 0.15 0.10 0.09 0.08

1000 0.07 0.07 0.06 0.06 0.06 0.06 0.17 0.14 0.12 0.09 0.08 0.07

0.1 100 0.07 0.06 0.07 0.06 0.06 0.06 0.45 0.37 0.28 0.16 0.13 0.11

500 0.06 0.07 0.07 0.07 0.06 0.06 0.22 0.17 0.14 0.11 0.09 0.08

1000 0.07 0.07 0.07 0.07 0.07 0.06 0.16 0.13 0.11 0.10 0.09 0.08

0.5 100 0.06 0.06 0.06 0.07 0.07 0.07 0.37 0.28 0.20 0.17 0.13 0.11

500 0.06 0.07 0.07 0.06 0.06 0.06 0.17 0.13 0.11 0.10 0.09 0.07

1000 0.07 0.07 0.06 0.06 0.06 0.06 0.14 0.11 0.09 0.08 0.08 0.07

Ω̂-based Ŝdd-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.19 0.19 0.19 0.17 0.15 0.13 0.08 0.09 0.12 0.20 0.28 0.37

500 0.18 0.19 0.19 0.15 0.13 0.11 0.14 0.21 0.28 0.52 0.62 0.73

1000 0.19 0.19 0.17 0.14 0.13 0.12 0.21 0.30 0.40 0.67 0.76 0.82

0.1 100 0.16 0.16 0.17 0.15 0.14 0.12 0.08 0.10 0.15 0.25 0.36 0.46

500 0.17 0.17 0.16 0.13 0.11 0.10 0.19 0.27 0.36 0.62 0.72 0.80

1000 0.18 0.15 0.13 0.11 0.10 0.09 0.29 0.39 0.50 0.76 0.83 0.87

0.5 100 0.13 0.15 0.14 0.15 0.13 0.09 0.16 0.19 0.21 0.46 0.54 0.63

500 0.13 0.13 0.10 0.08 0.06 0.05 0.32 0.40 0.48 0.75 0.82 0.86

1000 0.12 0.10 0.07 0.06 0.05 0.04 0.41 0.52 0.62 0.85 0.90 0.91

Notes: See the notes to Table 5. All tests are compared against two-sided
standard normal critical values.
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Table C4: Size Tests, DGP1, Rolling

Θ-based Ω-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.01 0.00 0.00

500 0.01 0.01 0.01 0.02 0.01 0.01 0.03 0.02 0.01 0.02 0.02 0.01

1000 0.02 0.02 0.01 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02

0.1 100 0.01 0.01 0.00 0.01 0.01 0.00 0.03 0.02 0.01 0.01 0.01 0.00

500 0.02 0.02 0.01 0.03 0.02 0.02 0.04 0.03 0.02 0.03 0.02 0.02

1000 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.03 0.02 0.03 0.03 0.03

0.5 100 0.03 0.03 0.02 0.03 0.03 0.02 0.05 0.04 0.03 0.04 0.03 0.02

500 0.03 0.03 0.03 0.03 0.04 0.04 0.05 0.04 0.03 0.04 0.04 0.03

1000 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Ω̂-based Ŝdd-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.07 0.04 0.02 0.06 0.04 0.02 0.02 0.01 0.00 0.06 0.07 0.05

500 0.07 0.06 0.03 0.06 0.05 0.03 0.05 0.07 0.06 0.33 0.33 0.28

1000 0.07 0.05 0.04 0.05 0.05 0.04 0.13 0.15 0.14 0.40 0.39 0.35

0.1 100 0.07 0.06 0.04 0.07 0.05 0.03 0.02 0.01 0.01 0.13 0.15 0.13

500 0.08 0.06 0.04 0.06 0.05 0.04 0.10 0.12 0.12 0.39 0.37 0.34

1000 0.07 0.06 0.04 0.06 0.06 0.04 0.20 0.23 0.21 0.43 0.41 0.40

0.5 100 0.11 0.10 0.06 0.08 0.06 0.04 0.07 0.07 0.07 0.30 0.32 0.28

500 0.08 0.07 0.05 0.06 0.05 0.04 0.22 0.25 0.25 0.42 0.41 0.39

1000 0.07 0.06 0.05 0.05 0.05 0.05 0.31 0.34 0.33 0.44 0.44 0.44

Notes: See the notes to Table 3. Models are estimated with a rolling scheme.
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Table C5: Power Tests, DGP1, Rolling

Θ-based Ω-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.13 0.19 0.31 0.23 0.37 0.68 0.42 0.48 0.62 0.22 0.23 0.34

500 0.52 0.86 1.00 0.88 1.00 1.00 0.91 0.99 1.00 0.92 0.99 1.00

1000 0.84 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

0.1 100 0.18 0.31 0.56 0.34 0.60 0.92 0.57 0.70 0.86 0.42 0.53 0.78

500 0.71 0.98 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.99 1.00 1.00

1000 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.5 100 0.38 0.63 0.93 0.68 0.92 1.00 0.85 0.95 1.00 0.87 0.97 1.00

500 0.98 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99

1000 1.00 0.99 0.99 1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00 0.99

Ω̂-based Ŝdd-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.47 0.57 0.71 0.58 0.68 0.79 0.16 0.21 0.34 0.42 0.65 0.89

500 0.96 1.00 1.00 1.00 1.00 1.00 0.71 0.95 1.00 0.99 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00

0.1 100 0.65 0.79 0.92 0.78 0.86 0.95 0.26 0.42 0.68 0.67 0.90 0.99

500 0.99 1.00 1.00 1.00 1.00 1.00 0.88 1.00 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

0.5 100 0.89 0.97 1.00 0.96 0.99 1.00 0.60 0.85 0.99 0.95 1.00 1.00

500 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99

1000 1.00 0.99 0.99 1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00 0.99

Notes: See the notes to Table 4. Models are estimated with a rolling scheme.
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Table C6: Size Tests, DGP2, Rolling

Θ-based Ω-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.02 0.02 0.01 0.04 0.04 0.03 0.20 0.15 0.10 0.12 0.10 0.09

500 0.03 0.02 0.02 0.03 0.03 0.03 0.11 0.08 0.06 0.06 0.05 0.05

1000 0.03 0.03 0.02 0.04 0.04 0.04 0.08 0.06 0.05 0.05 0.05 0.05

0.1 100 0.03 0.03 0.02 0.05 0.06 0.06 0.19 0.15 0.11 0.12 0.10 0.10

500 0.03 0.03 0.03 0.05 0.05 0.05 0.10 0.07 0.06 0.07 0.06 0.06

1000 0.04 0.04 0.03 0.04 0.05 0.05 0.08 0.07 0.06 0.06 0.06 0.06

0.5 100 0.04 0.04 0.04 0.08 0.10 0.12 0.21 0.18 0.15 0.16 0.15 0.18

500 0.05 0.06 0.05 0.07 0.08 0.09 0.13 0.10 0.09 0.09 0.10 0.10

1000 0.05 0.05 0.05 0.06 0.06 0.07 0.09 0.08 0.07 0.08 0.07 0.07

Ω̂-based Ŝdd-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.08 0.07 0.06 0.12 0.11 0.11 0.03 0.02 0.01 0.10 0.13 0.13

500 0.09 0.08 0.08 0.12 0.11 0.09 0.05 0.05 0.04 0.28 0.31 0.31

1000 0.10 0.10 0.08 0.11 0.11 0.09 0.08 0.09 0.08 0.35 0.38 0.37

0.1 100 0.07 0.07 0.07 0.13 0.13 0.14 0.03 0.03 0.02 0.15 0.20 0.23

500 0.08 0.09 0.08 0.11 0.10 0.10 0.07 0.08 0.07 0.34 0.38 0.40

1000 0.09 0.10 0.09 0.09 0.09 0.09 0.12 0.13 0.14 0.42 0.44 0.45

0.5 100 0.09 0.10 0.11 0.15 0.17 0.19 0.09 0.07 0.06 0.31 0.38 0.45

500 0.11 0.12 0.10 0.10 0.09 0.08 0.17 0.19 0.19 0.47 0.50 0.52

1000 0.10 0.10 0.08 0.07 0.06 0.06 0.21 0.24 0.26 0.49 0.50 0.50

Notes: See the notes to Table 5. Models are estimated with a rolling scheme.
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Table C7: Power Tests, DGP2, Rolling

Θ-based Ω-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.03 0.03 0.02 0.01 0.00 0.00 0.27 0.23 0.17 0.07 0.03 0.01

500 0.05 0.04 0.04 0.00 0.00 0.00 0.37 0.32 0.28 0.02 0.00 0.00

1000 0.05 0.05 0.07 0.00 0.00 0.00 0.40 0.37 0.35 0.01 0.00 0.00

0.1 100 0.04 0.04 0.03 0.01 0.00 0.00 0.31 0.28 0.24 0.08 0.03 0.01

500 0.06 0.08 0.09 0.00 0.00 0.00 0.43 0.42 0.41 0.02 0.00 0.00

1000 0.07 0.09 0.14 0.00 0.00 0.00 0.47 0.47 0.51 0.00 0.00 0.00

0.5 100 0.07 0.09 0.12 0.01 0.01 0.00 0.43 0.43 0.48 0.12 0.06 0.01

500 0.13 0.20 0.39 0.00 0.00 0.00 0.59 0.68 0.82 0.04 0.01 0.00

1000 0.19 0.33 0.64 0.00 0.00 0.00 0.69 0.80 0.93 0.01 0.00 0.00

Ω̂-based Ŝdd-based

c = 0.5σu c = σu c = 0.5σu c = σu

P/R P/R P/R P/R

α R 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

0.05 100 0.13 0.13 0.11 0.09 0.06 0.02 0.06 0.04 0.01 0.05 0.02 0.01

500 0.31 0.29 0.25 0.05 0.01 0.00 0.09 0.06 0.03 0.02 0.00 0.00

1000 0.37 0.33 0.30 0.02 0.00 0.00 0.10 0.08 0.06 0.01 0.00 0.00

0.1 100 0.17 0.17 0.17 0.10 0.07 0.02 0.08 0.06 0.03 0.05 0.03 0.01

500 0.37 0.37 0.34 0.05 0.01 0.00 0.12 0.11 0.07 0.02 0.00 0.00

1000 0.41 0.40 0.42 0.01 0.00 0.00 0.14 0.13 0.12 0.00 0.00 0.00

0.5 100 0.29 0.32 0.38 0.17 0.10 0.03 0.15 0.14 0.12 0.11 0.06 0.02

500 0.51 0.58 0.71 0.06 0.01 0.00 0.25 0.30 0.42 0.03 0.01 0.00

1000 0.62 0.70 0.86 0.02 0.00 0.00 0.33 0.44 0.65 0.01 0.00 0.00

Notes: See the notes to Table 6. Models are estimated with a rolling scheme.
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