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Motivation: Modeling the yield curve

Factor models

▶ Three factors: level, slope, curvature
e.g. Nelson, Siegel (1987); Litterman, Scheinkman (1991); Diebold, Li (2006); Koopman, Mallee, van der

Wel (2010); Christensen, Diebold, Rudebusch (2011)

▶ Three factors plus macro-finance variables/factors
e.g. Ang, Piazzesi (2004); Diebold, Rudebusch, Aruoba (2006); Moench (2008); Ludvigson, Ng (2009);

Joslin, Priebsch, Singleton (2014); Coroneo, Giannone, Modugno (2016); Byrne, Cao, Korobilis (2017)

▶ More than three factors (with or without macro-finance components)
e.g. Cochrane, Piazzesi (2005); Adrian, Crumb, Mönch (2013); van Dijk, Koopman, van der Wel, Wright

(2014); Bauer, Hamilton (2018)

Local spillovers

▶ Overlap of neighboring maturities: Crumb, Gospodinov (2022a,b)

▶ Preferred habitat investors: Vayanos, Vila (2021)
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Methodological contribution

Agnostic empirical modeling approach for panel data, combining global
(factor) and local (spatial) dependence, and allowing for:

▶ heterogeneous spillover intensity parameters;

▶ heterogeneous slope coefficients and variances;

▶ built-in model selection (regressors, factor loadings, spatial
dependence, number of factors).

Method: High-dimensional sparse dynamic factor model with regressors

and spatial errors; EM-type optimization of penalized state space

likelihood function.
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Empirical contribution

▶ In-sample modeling and out-of-sample prediction of monthly
treasury bond excess returns.

▶ Best models feature several latent dynamic factors plus
heterogeneous local dependence; evidence for maturity-specific,
time-varying impact of macroeconomic regressor variables.

▶ Good out-of-sample performance, significant improvements over
expectation hypothesis and factors-only model for short maturities.
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Some closely related literature

▶ Panel data models with common factors and (heterogeneous)
spatial dependence:
Bai, Li (2021); Aquaro, Bailey, Pesaran (2020).

▶ High-dimensional sparse factor models:
Kaufmann, Schumacher (2017, 2019); Frühwirth-Schnatter, Lopes
(2018).
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Outline

▶ Introduction

▶ Methodology

▶ Monte Carlo simulation

▶ Empirical application: Predicting the yield curve

▶ Conclusion
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HSE-DNF-X Model

Heterogeneous spatial error dynamic factor model with regressors:

yt = βXt + Λft + ξt , t = 1, . . . ,T

ft+1 = ϕft + ηt , ηt ∼ N(0,Ση) ,

ξt = PW ξt + εt , εt ∼ N(0,Σε) .

▶ Data and latent factors:

yt , Xt , ft .
(N × 1) (K × 1) (r × 1)

▶ Parameters:

β, Λ, ϕ, Ση, Σε, ρ.
(N × K) (N × r) (r × r) (r × r) (N × N) (N × 1)

▶ P = diag(ρ) and W is a known (N × N) matrix of spatial weights with
wii = 0 and maximum eigenvalue 1.
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Estimation and model selection

▶ If N is large, the number of coefficients is large. Furthermore,

▷ the true number of factors r is unknown;
▷ individual elements or entire columns of β might equal zero;
▷ some spillover intensities ρi might be equal to to each other.

▶ For estimation and model selection, we combine “plain” Lasso for
the elements of β with group Lasso for the columns of β and Λ
together with fused Lasso for the elements of ρ.

▶ Penalty parameter choice via information criteria or time series
cross-validation.

▶ Optional: improve estimates using adaptive Lasso (Zou, 2006).
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Estimation
▶ Penalized log likelihood:

L(θ) =− NT
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)
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where vt is the prediction error, Ft is its variance, Λ•j denotes the j-th
column of Λ and β•k the k-th column of β.

▶ Penalty parameters γρ, γ
l
β,ik , γ

gl
β,k , and γΛ,j control model sparsity.

▶ Direct numerical optimization of (1) can be cumbersome; use
Expectation-Conditional Maximization (ECM; Meng, Rubin 1993)
algorithm instead.
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ECM algorithm

Input: Penalty parameters γ l
Λ,ij , γ

gl
Λ,j , γ

l
β,ik , γ

gl
β,k , and γρ and initial θ(0) .

Iterate until convergence: For iteration k + 1 .

▶ E-Step:

▷ Given θ(k), run Kalman filter and smoother to obtain estimates of
E[ft |y1, ..., yT ] and corresponding variance and autocovariance
matrices.

▷ Plug these objects into conditional expectation of penalized

complete data log likelihood Q
(
θ(k+1)|θ(k)

)
.

▶ CM-Step:

▷ Estimate ϕ(k+1) and Σ
(k+1)
η using least squares.

▷ Sequentially optimize Q
(
θ(k+1)|θ(k)

)
with respect to Λ, β, Σε, and

ρ, using proximal gradient descent, see Boyd et al (2011).
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Adaptive ECM Algorithm

▶ For the adaptive version of our ECM algorithm we follow the approach of

Lu and Su (2016) to obtain penalization weights for β and Λ.

1. Obtain OLS estimates of the slopes β by regressing the Kmax

regressors on the N time series, denoted by β̃.
2. Obtain PCA estimates of Λ and factors ft from the demeaned data

ỹt = β̃Xt , denoted by Λ̃ and f̃t .

3. Compute rmax eigenvalues of Σ̂f̂ = T−1 ∑T
t=1 f̂t f̂

′
t arranged in

descending order, denoted by τ1, . . . , τrmax , where

f̂t = (NT )−1(
∑T

t=1 f̃t ỹ
′
t )ỹt .

▶ The adaptive penalty parameters are then given by

γ l
β,ik =

γ l
β

|β̃ik |
γgl
β,k =

γgl
β

∥β̃•k∥2
γΛ,j =

γΛ
τj
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Outline

▶ Introduction

▶ Methodology

▶ Monte Carlo simulation

▶ Empirical application: Predicting the yield curve

▶ Conclusion
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Monte Carlo simulation

Goal: Investigate the finite sample performance of our ECM algorithm in terms
of estimation and model selection accuracy.

▶ Simulate from HSE-DNF-X model (1000 replications),

yt = βXt + Λft + ξt , ft+1 = ϕft + ηt , ξt = PW ξt + εt .

▶ Xt,ik , ϵt,i , ηt,j ∼ N(0, 1).

▶ Regressors: K = 1, Kmax = 2, slope coefficients βik ∼ U(1/2, 1) for k = 1
and i ≤ N ÷ 2, otherwise βik = 0.

▶ Factors: r = 2, rmax = 3, loadings λij ∼ N(0, 1) for j = 1, 2, λij = 0 for
j = 3; ϕ = diag(0.5, 0.7, 0.9).

▶ Spatial spillover intensity: ρi = 0.2 for i = 1, ...,N/2, ρi = 0.6 for
i = N/2 + 1, ...,N.

▶ Sample sizes: N ∈ {10, 25, 50}, T ∈ {250, 500, 1000}.
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Some simulation results

latent factors regressors local dependence
RMSE #factors RMSE sparsity #regressors RMSE #groups cos. similarity

N = 10

T = 250 0.222 2.095 0.032 0.985 1.003 0.091 2.466 0.979
T = 500 0.203 2.019 0.026 0.998 1.000 0.086 2.460 0.982
T = 1000 0.187 2.002 0.024 0.999 1.000 0.084 2.489 0.983

N = 25

T = 250 0.102 2.432 0.015 0.987 1.001 0.037 2.924 0.997
T = 500 0.099 2.396 0.013 0.998 1.000 0.034 2.568 0.997
T = 1000 0.098 2.318 0.012 0.999 1.000 0.033 2.367 0.997

N = 50

T = 250 0.118 2.674 0.010 0.985 1.011 0.024 3.809 0.999
T = 500 0.119 2.593 0.009 0.998 1.000 0.022 3.369 0.998
T = 1000 0.115 2.377 0.008 0.999 1.000 0.020 3.018 0.999

▶ As T increases, coefficients are estimated more accurately.

▶ Model selection (sparsity patterns, number of regressors and factors,
group structure in local dependence) is fairly accurate for realistic T , N.
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Outline

▶ Introduction

▶ Methodology

▶ Monte Carlo simulation

▶ Empirical application: Predicting the yield curve

▶ Conclusion
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Data

▶ Monthly constant maturity zero-coupon Treasury yield curve from
the data set of Liu and Wu (2020, JFE).

▶ 576 monthly observations, covering January 1972 – December 2019.

▶ Excess returns for 17 maturities, using 1 month as risk-free rate:

▷ Short: 3, 6, 9, 12 months
▷ Medium: 15, 18, 21, 24, 30, 36, 48 months
▷ Long: 60, 72, 84, 96, 108, 120 months

▶ Regressors: IP growth, Real interest rate (Coroneo, Giannone,
Modugno 2016; Joslin, Priebsch, Singleton 2014).

▶ Full model allows for heterogeneous but potentially sparse slopes, up
to five factors, heterogeneous, grouped or constant local
dependence; W with one direct neighbor structure.

▶ Analysis: Full-sample, rolling windows (20 years; 324 windows).
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Yield data

time
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Excess returns

▶ Levels close to nonstationary; use excess returns instead (Bianchi,
Büchner, Tamoni 2020).

▶ p
(n)
t : Log price of zero coupon bond with maturity n at time t

▶ Log yield:

y
(n)
t = −1

n
p
(n)
t (2)

▶ Log holding period return (buy n-year bond at time t and sell it as
n − 1-year bond at t + 1):

r
(n)
t+1 = p

(n−1)
t+1 − p

(n)
t (3)

▶ Excess log return (our dependent variable):

rx
(n)
t+1 = r

(n)
t+1 − y

(1)
t (4)
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Excess return data
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In-sample results

▶ Data-driven model selection via BIC.

▶ 5 factors selected for full sample.

▶ Macro variables play a minor role: real interest rate is deselected,
some negative coefficients for IP growth.

▶ Local dependence:

▷ Short:
3m 6m 9m 12m

0.9947 0.9947 0.9947 0.8461

▷ Medium:
15m 18m 21m 24m 30m 36m 48m

0.7166 0.8600 0.9817 0.9000 0.9000 0.8699 0.8699

▷ Long:
60m 72m 84m 96m 108m 120m

0.8545 0.7559 0.7827 0.7827 0.6184 0.6184
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Rolling windows and out-of-sample prediction

▶ Re-estimation and penalty parameter choice in every window using
3y validation sample and mean absolute forecast error as criterion.

▶ Iterative out-of-sample forecasts for h = 1, 2, .., 12 months.

▶ VAR(3) forecasting model for IP growth and real interest rate.

▶ Benchmarks: Our model with only dynamic factors, expectation
hypothesis (EH; unpredictable excess returns).

▶ Forecast evaluation using relative MAFEs and test for multi-horizon
predictive ability.

▶ Evaluation period: January 1992 – December 2019.
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Rolling windows: number of factors
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Rolling windows: number of regressors
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Rolling windows: slopes IP growth
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Rolling windows: slopes real interest rate
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Rolling windows: local dependence
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Forecast comparison: HSE-DFM-X vs. EH
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Forecast comparison: HSE-DFM-X vs. factors-only
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Multi-horizon forecast comparison: EH

▶ Test for multi-horizon superior predictive ability (Quaedvlieg, 2019).

▶ Test statistics (based on MAFE):

3 m 6 m 9 m 12 m 15 m 18 m

full sample 7.98∗ 6.87∗ 6.13∗ 5.65∗ 4.94∗ 3.44∗

pre-crisis 5.34∗ 4.08∗ 3.01∗ 2.35∗ 1.79∗ 0.75
financial crisis 1.04 1.75∗ 0.78 0.71 -0.03 -0.16
post-crisis 10.35∗ 9.07∗ 9.78∗ 9.64∗ 9.33∗ 7.97∗

21 m 24 m 30 m 36 m 48 m 60 m

full sample 1.33∗ 0.53 -0.83† -1.24† -1.52† -1.76†

pre-crisis -0.46 -0.69 -0.69 -0.73† -0.88† -1.08†

financial crisis 0.05 -0.02 -0.38 -0.22 0.48 0.56

post-crisis 4.13∗ 2.29∗ -0.38 -1.33† -2.24† -2.32†

72 m 84 m 96 m 108 m 120 m

full sample -1.99† -1.98† -2.26† -2.57† -3.15†

pre-crisis -1.27† -1.29† -1.66† -1.93† -2.02†

financial crisis 0.23 0.22 0.00 -0.30 -0.84

post-crisis -2.21† -2.09† -2.03† -2.06† -2.55†

∗HSE-DFM-X outperforms EH (α = 10%), †EH outperforms HSE-DFM-X (α = 10%)
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Multi-horizon forecast comparison: factors-only

▶ Test for multi-horizon superior predictive ability (Quaedvlieg, 2019).

▶ Test statistics (based on MAFE):

3 m 6 m 9 m 12 m 15 m 18 m

full sample 7.89∗ 6.83∗ 6.02∗ 5.55∗ 4.83∗ 3.18∗

pre-crisis 5.39∗ 4.27∗ 3.08∗ 2.32∗ 1.67∗ 0.51

financial crisis 0.68 0.49 -0.02 0.46 -0.39 -1.56†

post-crisis 9.81∗ 8.94∗ 9.72∗ 9.50∗ 9.26∗ 8.96∗

21 m 24 m 30 m 36 m 48 m 60 m

full sample 1.07∗ 0.18 -1.44† -1.89† -2.24† -2.94†

pre-crisis -0.82† -1.21† -1.29† -1.20† -1.25† -1.43†

financial crisis -1.72† -1.73† -2.17† -2.16† -1.71† -2.37†

post-crisis 6.94∗ 3.97∗ 0.43 -0.68 -1.62† -2.21†

72 m 84 m 96 m 108 m 120 m

full sample -2.92† -2.40† -2.37† -2.41† -2.40†

pre-crisis -1.50† -1.41† -1.68† -1.87† -1.92†

financial crisis -2.19† -1.65† -1.47† -1.40† -1.26

post-crisis -2.12† -1.57† -1.32† -1.14† -1.22†

∗HSE-DFM-X outperforms factors-only model (α = 10%), †factors-only model outperforms HSE-DFM-X
(α = 10%)
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Conclusion

▶ Agnostic method for empirical analysis of panel data with regressors
as well as dependencies over cross-section and time.

▶ Tailored algorithm to efficiently combine estimation and model
selection. Works in simulations.

▶ Some new insights on the properties of treasury yields (excess
returns):

▷ Even after controlling for up to five latent factors, local
dependence appears to play an important role.

▷ Impact of macro variables on bond returns is time-varying.
▷ Including model features in an adaptive way improves

out-of-sample forecasting performance at the short end of the
yield curve.



Thank you!
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