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Introduction 2
Motivation: Modeling the yield curve

Factor models

» Three factors: level, slope, curvature
e.g. Nelson, Siegel (1987); Litterman, Scheinkman (1991); Diebold, Li (2006); Koopman, Mallee, van der
Wel (2010); Christensen, Diebold, Rudebusch (2011)

» Three factors plus macro-finance variables/factors
e.g. Ang, Piazzesi (2004); Diebold, Rudebusch, Aruoba (2006); Moench (2008); Ludvigson, Ng (2009);
Joslin, Priebsch, Singleton (2014); Coroneo, Giannone, Modugno (2016); Byrne, Cao, Korobilis (2017)

» More than three factors (with or without macro-finance components)
e.g. Cochrane, Piazzesi (2005); Adrian, Crumb, Ménch (2013); van Dijk, Koopman, van der Wel, Wright
(2014); Bauer, Hamilton (2018)

Local spillovers
» Overlap of neighboring maturities: Crumb, Gospodinov (2022a,b)
» Preferred habitat investors: Vayanos, Vila (2021)
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Methodological contribution

Agnostic empirical modeling approach for panel data, combining global
(factor) and local (spatial) dependence, and allowing for:

» heterogeneous spillover intensity parameters;
» heterogeneous slope coefficients and variances;

» built-in model selection (regressors, factor loadings, spatial
dependence, number of factors).

Method: High-dimensional sparse dynamic factor model with regressors
and spatial errors; EM-type optimization of penalized state space
likelihood function.
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Empirical contribution

» In-sample modeling and out-of-sample prediction of monthly
treasury bond excess returns.

» Best models feature several latent dynamic factors plus
heterogeneous local dependence; evidence for maturity-specific,
time-varying impact of macroeconomic regressor variables.

» Good out-of-sample performance, significant improvements over
expectation hypothesis and factors-only model for short maturities.




Introduction

Some closely related literature

» Panel data models with common factors and (heterogeneous)
spatial dependence:
Bai, Li (2021); Aquaro, Bailey, Pesaran (2020).

» High-dimensional sparse factor models:
Kaufmann, Schumacher (2017, 2019); Friihwirth-Schnatter, Lopes
(2018).
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HSE-DNF-X Model

Heterogeneous spatial error dynamic factor model with regressors:

yt:ﬁXt—"/\ﬂ—’_fta t:17"7T
fir1 = ofe + 1, ne ~ N(0,Z,),
& = PW¢& + ¢, Et ~ (O,Zs)

» Data and latent factors:
Yt Xtv ft
(Nx1) (Kx1) (rx1)
» Parameters:
B, A, ?, >, ., p-
(NxK) (Nxr) (rxr) (rxr) (NxN) (Nx1)
» P =diag(p) and W is a known (N x N) matrix of spatial weights with
wii = 0 and maximum eigenvalue 1.
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Estimation and model selection

» If N is large, the number of coefficients is large. Furthermore,

> the true number of factors r is unknown;
> individual elements or entire columns of 8 might equal zero;
> some spillover intensities p; might be equal to to each other.

» For estimation and model selection, we combine “plain” Lasso for
the elements of 3 with group Lasso for the columns of 8 and A
together with fused Lasso for the elements of p.

» Penalty parameter choice via information criteria or time series
cross-validation.

» Optional: improve estimates using adaptive Lasso (Zou, 2006).
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Estimation
» Penalized log likelihood:
-
NT 1 /1
L(0) = — = log(2m) — ; (Iog|Ft| + V[ vt)
N Kmax Kmax

—pr, picil =YD s, :k|5:k|—z\ﬁva [l Bekll2
i=1 k=1

Imax

= VNl
j=1

Aejll2, (1)

where v; is the prediction error, F; is its variance, Ao; denotes the j-th
column of A and B¢k the k-th column of S.

» Penalty parameters v, ’y;.}y,‘k, vg”k, and ~ya,; control model sparsity.

» Direct numerical optimization of (1) can be cumbersome; use

Expectation-Conditional Maximization (ECM; Meng, Rubin 1993)
algorithm instead.
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ECM algorithm

Input: Penalty parameters 7, ;, 'y,g\fj, VB.ik » 'ygik, and 7, and initial 6
Iterate until convergence: For iteration k+ 1.
» E-Step:

> Given 8%), run Kalman filter and smoother to obtain estimates of
E[f¢|y1, ..., yT] and corresponding variance and autocovariance
matrices.

> Plug these objects into conditional expectation of penalized
complete data log likelihood @ (9(k+1)|9(k)).
» CM-Step:
> Estimate d)“‘*l) and ):%Hl) using least squares.
> Sequentially optimize @ (9(k+1)|9(k)) with respect to A, 8, ., and
p, using proximal gradient descent, see Boyd et al (2011).
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Adaptive ECM Algorithm

» For the adaptive version of our ECM algorithm we follow the approach of
Lu and Su (2016) to obtain penalization weights for 8 and A.

1. Obtain OLS estimates of the slopes by regiessing the Kpax
regressors on the NV time series, denoted by (3.

2. Obtain PCA estimates of A and factors f; from the demeaned data
Yt = BXt, denoted by A and f;.

3. Compute rpax eigenvalues of ¥z = T! Z;l ff/ arranged in
descending order, denoted by 7i,...,T,.., where
fo= (NT) (2L fy)7e.

» The adaptive penalty parameters are then given by
|
VB 75 T

= Yok = 7= YN =
| Bix| |Bekll2 Tj

/
VB,ik =
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Monte Carlo simulation

Goal: Investigate the finite sample performance of our ECM algorithm in terms
of estimation and model selection accuracy.

» Simulate from HSE-DNF-X model (1000 replications),

Ve =BXe + N+ &, fimr=0ofi+n:, & = PWE +e..

> Xt,ik, Etiy MNt,j ~ N(Oa 1)~

> Regressors: K =1, Kmax = 2, slope coefficients Bk ~ U(1/2,1) for k =1
and i < N + 2, otherwise i = 0.

» Factors: r =2, rmax = 3, loadings Aj ~ N(0,1) for j = 1,2, \j =0 for
j=3; ¢ = diag(0.5,0.7,0.9).

» Spatial spillover intensity: p; = 0.2 for i =1,...,N/2, p; = 0.6 for
i=N/2+1,..,N.

» Sample sizes: N € {10,25,50}, T € {250,500,1000}.
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Some simulation results

latent factors regressors local dependence
RMSE  #factors | RMSE  sparsity ~ #regressors | RMSE  #groups cos. similarity
\ N =10
T = 250 0.222 2.095 0.032 0.985 1.003 0.091 2.466 0.979
T = 500 0.203 2.019 0.026 0.998 1.000 0.086 2.460 0.982
T = 1000 | 0.187 2.002 0.024 0.999 1.000 0.084 2.489 0.983
\ N =25
T = 250 0.102 2.432 0.015 0.987 1.001 0.037 2.924 0.997
T = 500 0.099 2.396 0.013 0.998 1.000 0.034 2.568 0.997
T = 1000 | 0.098 2.318 0.012 0.999 1.000 0.033 2.367 0.997
\ N = 50
T = 250 0.118 2.674 0.010 0.985 1.011 0.024 3.809 0.999
T = 500 0.119 2.593 0.009 0.998 1.000 0.022 3.369 0.998
T =1000 | 0.115 2.377 0.008 0.999 1.000 0.020 3.018 0.999

» As T increases, coefficients are estimated more accurately.

» Model selection (sparsity patterns, number of regressors and factors,
group structure in local dependence) is fairly accurate for realistic T, N.
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Data

>

>
>

Monthly constant maturity zero-coupon Treasury yield curve from
the data set of Liu and Wu (2020, JFE).

576 monthly observations, covering January 1972 — December 2019.

Excess returns for 17 maturities, using 1 month as risk-free rate:

> Short: 3, 6, 9, 12 months
> Medium: 15, 18, 21, 24, 30, 36, 48 months
> Long: 60, 72, 84, 96, 108, 120 months

Regressors: IP growth, Real interest rate (Coroneo, Giannone,
Modugno 2016; Joslin, Priebsch, Singleton 2014).

Full model allows for heterogeneous but potentially sparse slopes, up
to five factors, heterogeneous, grouped or constant local
dependence; W with one direct neighbor structure.

Analysis: Full-sample, rolling windows (20 years; 324 windows).




Empirical Application

Yield data

120 m

| 96 m

72m

48 m

30m

21m

9m

3m

T T T T T T T T T T
1972 1977 1982 1987 1992 1997 2002 2007 2012 2017
time




Empirical Application 18

Excess returns

» Levels close to nonstationary; use excess returns instead (Bianchi,
Biichner, Tamoni 2020).
> pﬁ”): Log price of zero coupon bond with maturity n at time t

» Log yield:
n 1 n
W = Ly @)
n
» Log holding period return (buy n-year bond at time t and sell it as
n — l-year bond at t + 1):

n n—1 n
‘t(+)1 = P£+1 ) Pg ) 3)
» Excess log return (our dependent variable):

n n 1
rXt(+)1 = ’t(+)1 - Yt( ) (4)
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Excess return data

100

-100

T T T T T T T T T T
1972 1977 1982 1987 1992 1997 2002 2007 2012 2017
time

120 m

96 m

72m

48 m

30m

21m

9m

3m




Empirical Application

In-sample results

» Data-driven model selection via BIC.
» 5 factors selected for full sample.

» Macro variables play a minor role: real interest rate is deselected,
some negative coefficients for IP growth.

» Local dependence:

3m 6m 9m 12m
> Short:
0.9947 0.9947 0.9947 0.8461
. 15m 18m 21m 24m 30m 36m 48m
> Medium:
0.7166 0.8600 0.9817 0.9000 0.9000 0.8699 0.8699
60m 72m 84m 96m 108m 120m
> Long:

0.8545 0.7559 0.7827 0.7827 0.6184 0.6184
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Rolling windows and out-of-sample prediction

» Re-estimation and penalty parameter choice in every window using
3y validation sample and mean absolute forecast error as criterion.

» lterative out-of-sample forecasts for h = 1,2, .., 12 months.
» VAR(3) forecasting model for IP growth and real interest rate.

» Benchmarks: Our model with only dynamic factors, expectation
hypothesis (EH; unpredictable excess returns).

» Forecast evaluation using relative MAFEs and test for multi-horizon
predictive ability.

» Evaluation period: January 1992 — December 2019.
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Rolling windows: number of factors
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Rolling windows: number of regressors
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Rolling windows: slopes IP growth
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Rolling windows: slopes real interest rate
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Rolling windows: local dependence
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Forecast comparison: HSE-DFM-X vs. EH
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Forecast comparison: HSE-DFM-X vs. factors-only
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Multi-horizon forecast comparison: EH

29

» Test for multi-horizon superior predictive ability (Quaedvlieg, 2019).
> Test statistics (based on MAFE):

3m 6 m 9m 12 m 15 m 18 m
full sample 7.98* 6.87* 6.13* 5.65* 4.94* 3.44*
pre-crisis 5.34* 4.08* 3.01* 2.35% 1.79* 0.75
financial crisis 1.04 1.75* 0.78 0.71 -0.03 -0.16
post-crisis 10.35* 9.07* 9.78* 9.64* 9.33* 7.97*
2lm 24 m 30 m 36 m 48 m 60 m
full sample 1.33* 0.53 -0.83t 1247 st 1767
pre-crisis -0.46 -0.69 069 -073"  _0sst 108"
financial crisis 0.05 -0.02 -0.38 -0.22 0.48 0.56
post-crisis 4.13* 2.29% 038  -1.337 224t 2327
72 m 84 m 96 m 108 m 120 m
full sample -1.99t 108t 2267 257t 35T
pre-crisis 27t 120t 166T 103t 202
financial crisis 0.23 0.22 0.00 -0.30 -0.84
post-crisis 2217 200t 203f 206" 255t

*HSE-DFM-X outperforms EH (a = 10%), TEH outperforms HSE-DFM-X (o = 10%)
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Multi-horizon forecast comparison: factors-only
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» Test for multi-horizon superior predictive ability (Quaedvlieg, 2019).
> Test statistics (based on MAFE):

3m 6 m 9m 12 m 15 m 18 m
full sample 7.89* 6.83* 6.02* 5.55* 4.83* 3.18*
pre-crisis 5.39* 4.27* 3.08* 2.32% 1.67* 0.51
financial crisis 0.68 0.49 -0.02 0.46 -0.39 -1.567
post-crisis 9.81* 8.94* 9.72* 9.50* 9.26* 8.96*
2lm 24 m 30m 36 m 48 m 60 m
full sample 1.07* 0.18 -1.44t 180t 2247 2041
pre-crisis -0.82f 121t o120t 120f o125t _1.43T
financial crisis ~ -1.72F 173t 27t 216t 17t 237t
post-crisis 6.94* 3.97* 0.43 068 -1627 221
72 m 84 m 96 m 108 m 120 m
full sample 292t 240t 237T 24t 2.40f
pre-crisis asof o141t 1est 187t 102
financial crisis ~ -2.107 1657 1477 _1.407 -1.26
post-crisis 212t 157t a3t 114t 1027

*HSE-DFM-X outperforms factors-only model (o =

10%), T factors-only model outperforms HSE-DFM-X

(o=

10%)
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Conclusion

» Agnostic method for empirical analysis of panel data with regressors
as well as dependencies over cross-section and time.

» Tailored algorithm to efficiently combine estimation and model
selection. Works in simulations.

» Some new insights on the properties of treasury yields (excess
returns):

> Even after controlling for up to five latent factors, local
dependence appears to play an important role.

> Impact of macro variables on bond returns is time-varying.

> Including model features in an adaptive way improves
out-of-sample forecasting performance at the short end of the
yield curve.




Thank you!
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