Regularized estimation of heterogeneous panel data models with dynamic factors and local cross-sectional dependence

Siem Jan Koopman^{1,2,3}, Julia Schaumburg^{1,2}, Quint Wiersma^{1,2} ¹Vrije Universiteit Amsterdam ²Tinbergen Institute ³CREATES

2

Motivation: Modeling the yield curve

Factor models

- Three factors: level, slope, curvature
 e.g. Nelson, Siegel (1987); Litterman, Scheinkman (1991); Diebold, Li (2006); Koopman, Mallee, van der Wel (2010); Christensen, Diebold, Rudebusch (2011)
- Three factors plus macro-finance variables/factors

e.g. Ang, Piazzesi (2004); Diebold, Rudebusch, Aruoba (2006); Moench (2008); Ludvigson, Ng (2009); Joslin, Priebsch, Singleton (2014); Coroneo, Giannone, Modugno (2016); Byrne, Cao, Korobilis (2017)

More than three factors (with or without macro-finance components)
 e.g. Cochrane, Piazzesi (2005); Adrian, Crumb, Mönch (2013); van Dijk, Koopman, van der Wel, Wright (2014); Bauer, Hamilton (2018)

Local spillovers

- Overlap of neighboring maturities: Crumb, Gospodinov (2022a,b)
- Preferred habitat investors: Vayanos, Vila (2021)

Methodological contribution

Agnostic empirical modeling approach for panel data, combining global (factor) and local (spatial) dependence, and allowing for:

- heterogeneous spillover intensity parameters;
- heterogeneous slope coefficients and variances;
- built-in model selection (regressors, factor loadings, spatial dependence, number of factors).

Method: High-dimensional sparse dynamic factor model with regressors and spatial errors; EM-type optimization of penalized state space likelihood function.

Empirical contribution

- In-sample modeling and out-of-sample prediction of monthly treasury bond excess returns.
- Best models feature several latent dynamic factors plus heterogeneous local dependence; evidence for maturity-specific, time-varying impact of macroeconomic regressor variables.
- Good out-of-sample performance, significant improvements over expectation hypothesis and factors-only model for short maturities.

Some closely related literature

- Panel data models with common factors and (heterogeneous) spatial dependence:
 Bai, Li (2021); Aquaro, Bailey, Pesaran (2020).
- High-dimensional sparse factor models: Kaufmann, Schumacher (2017, 2019); Frühwirth-Schnatter, Lopes (2018).

Outline

Introduction

Methodology

- Monte Carlo simulation
- ► Empirical application: Predicting the yield curve

6

Conclusion

HSE-DNF-X Model

Heterogeneous spatial error dynamic factor model with regressors:

$$\begin{split} y_t &= \beta X_t + \Lambda f_t + \xi_t , \qquad t = 1, \dots, T \\ f_{t+1} &= \phi f_t + \eta_t , \qquad \eta_t \sim \mathcal{N}(0, \Sigma_\eta) , \\ \xi_t &= \mathcal{PW} \xi_t + \varepsilon_t , \qquad \varepsilon_t \sim \mathcal{N}(0, \Sigma_\varepsilon) . \end{split}$$

Data and latent factors:

 $egin{array}{ccc} y_t, & X_t, & f_t. \ (N imes 1) & (K imes 1) & (r imes 1) \end{array}$

Parameters:

• $P = \text{diag}(\rho)$ and W is a known $(N \times N)$ matrix of spatial weights with $w_{ii} = 0$ and maximum eigenvalue 1.

Estimation and model selection

- \blacktriangleright If N is large, the number of coefficients is large. Furthermore,
 - \triangleright the true number of factors *r* is unknown;
 - \triangleright individual elements or entire columns of β might equal zero;

8

- \triangleright some spillover intensities ρ_i might be equal to to each other.
- For estimation and model selection, we combine "plain" Lasso for the elements of β with group Lasso for the columns of β and Λ together with fused Lasso for the elements of ρ.
- Penalty parameter choice via information criteria or time series cross-validation.
- ▶ Optional: improve estimates using adaptive Lasso (Zou, 2006).

Methodology

Estimation

► Penalized log likelihood:

$$\begin{split} \mathcal{L}(\theta) &= -\frac{NT}{2} \log(2\pi) - \frac{1}{2} \sum_{t=1}^{T} \left(\log|F_t| + v'_t F_t^{-1} v_t \right) \\ &- \sum_{i=2}^{N} \gamma_{\rho} |\rho_i - \rho_{i-1}| - \sum_{i=1}^{N} \sum_{k=1}^{K_{max}} \gamma'_{\beta,ik} |\beta_{ik}| - \sum_{k=1}^{K_{max}} \sqrt{N} \gamma^{\mathcal{B}'}_{\beta,k} \|\beta_{\bullet k}\|_2 \\ &- \sum_{j=1}^{r_{max}} \sqrt{N} \gamma_{\Lambda,j} \|\Lambda_{\bullet j}\|_2, \end{split}$$
(1)

9

where v_t is the prediction error, F_t is its variance, $\Lambda_{\bullet j}$ denotes the *j*-th column of Λ and $\beta_{\bullet k}$ the *k*-th column of β .

- ▶ Penalty parameters γ_{ρ} , $\gamma_{\beta,ik}^{l}$, $\gamma_{\beta,k}^{gl}$, and $\gamma_{\Lambda,j}$ control model sparsity.
- ► Direct numerical optimization of (1) can be cumbersome; use Expectation-Conditional Maximization (ECM; Meng, Rubin 1993) algorithm instead.

ECM algorithm

Input: Penalty parameters $\gamma'_{\Lambda,ij}$, $\gamma'_{\beta,ik}$, $\gamma'_{\beta,ik}$, $\gamma'_{\beta,k}$, and γ_{ρ} and initial $\theta^{(0)}$. **Iterate until convergence:** For iteration k + 1.

- ► E-Step:
 - ▷ Given θ^(k), run Kalman filter and smoother to obtain estimates of E[f_t|y₁,..., y_T] and corresponding variance and autocovariance matrices.
 - ▷ Plug these objects into conditional expectation of penalized complete data log likelihood $Q\left(\theta^{(k+1)}|\theta^{(k)}\right)$.
- ► CM-Step:
 - \triangleright Estimate $\phi^{(k+1)}$ and $\Sigma_{\eta}^{(k+1)}$ using least squares.
 - ▷ Sequentially optimize $Q\left(\theta^{(k+1)}|\theta^{(k)}\right)$ with respect to Λ , β , Σ_{ε} , and ρ , using proximal gradient descent, see Boyd et al (2011).

Adaptive ECM Algorithm

- For the adaptive version of our ECM algorithm we follow the approach of Lu and Su (2016) to obtain penalization weights for β and Λ.
 - 1. Obtain OLS estimates of the slopes β by regressing the K_{max} regressors on the N time series, denoted by $\tilde{\beta}$.
 - 2. Obtain PCA estimates of Λ and factors f_t from the demeaned data $\widetilde{y}_t = \widetilde{\beta} X_t$, denoted by $\widetilde{\Lambda}$ and $\widetilde{f_t}$.
 - Compute r_{max} eigenvalues of Σ_f = T⁻¹ Σ^T_{t=1} f̂_t f̂'_t arranged in descending order, denoted by τ₁,..., τ_{rmax}, where f̂_t = (NT)⁻¹(Σ^T_{t=1} f̃_t ŷ'_t)ŷ_t.
- ▶ The adaptive penalty parameters are then given by

$$\gamma'_{\beta,ik} = \frac{\gamma'_{\beta}}{|\widetilde{\beta}_{ik}|} \quad \gamma^{g\prime}_{\beta,k} = \frac{\gamma^{g\prime}_{\beta}}{\|\widetilde{\beta}_{\bullet k}\|_2} \quad \gamma_{\Lambda,j} = \frac{\gamma_{\Lambda}}{\tau_j}$$

Outline

- Introduction
- Methodology
- Monte Carlo simulation
- ▶ Empirical application: Predicting the yield curve

Conclusion

Monte Carlo simulation

Goal: Investigate the finite sample performance of our ECM algorithm in terms of estimation and model selection accuracy.

Simulate from HSE-DNF-X model (1000 replications),

$$y_t = \beta X_t + \Lambda f_t + \xi_t$$
, $f_{t+1} = \phi f_t + \eta_t$, $\xi_t = PW\xi_t + \varepsilon_t$.

•
$$X_{t,ik}, \epsilon_{t,i}, \eta_{t,j} \sim N(0,1).$$

- ▶ Regressors: K = 1, K_{max} = 2, slope coefficients β_{ik} ~ U(1/2, 1) for k = 1 and i ≤ N ÷ 2, otherwise β_{ik} = 0.
- Factors: r = 2, $r_{max} = 3$, loadings $\lambda_{ij} \sim N(0, 1)$ for j = 1, 2, $\lambda_{ij} = 0$ for j = 3; $\phi = \text{diag}(0.5, 0.7, 0.9)$.
- Spatial spillover intensity: $\rho_i = 0.2$ for i = 1, ..., N/2, $\rho_i = 0.6$ for i = N/2 + 1, ..., N.
- ▶ Sample sizes: $N \in \{10, 25, 50\}$, $T \in \{250, 500, 1000\}$.

Some simulation results

	laten RMSE	t factors #factors RMSE	regress sparsity	ors #regressors	RMSE	local depe #groups	ndence cos. similarity
				N = 10			
$T = 250 \ T = 500 \ T = 1000$	0.222 0.203 0.187	2.0950.0322.0190.0262.0020.024	0.985 0.998 0.999	1.003 1.000 1.000	0.091 0.086 0.084	2.466 2.460 2.489	0.979 0.982 0.983
				N = 25			
$T = 250 \ T = 500 \ T = 1000$	0.102 0.099 0.098	2.4320.0152.3960.0132.3180.012	0.987 0.998 0.999	1.001 1.000 1.000	0.037 0.034 0.033	2.924 2.568 2.367	0.997 0.997 0.997
				N = 50			
T = 250 T = 500 T = 1000	0.118 0.119 0.115	2.6740.0102.5930.0092.3770.008	0.985 0.998 0.999	1.011 1.000 1.000	0.024 0.022 0.020	3.809 3.369 3.018	0.999 0.998 0.999

- ▶ As *T* increases, coefficients are estimated more accurately.
- Model selection (sparsity patterns, number of regressors and factors, group structure in local dependence) is fairly accurate for realistic T, N.

Outline

- Introduction
- Methodology
- Monte Carlo simulation
- **•** Empirical application: Predicting the yield curve
- Conclusion

Data

- Monthly constant maturity zero-coupon Treasury yield curve from the data set of Liu and Wu (2020, JFE).
- ▶ 576 monthly observations, covering January 1972 December 2019.
- Excess returns for 17 maturities, using 1 month as risk-free rate:
 - ▷ Short: 3, 6, 9, 12 months
 - Medium: 15, 18, 21, 24, 30, 36, 48 months
 - Long: 60, 72, 84, 96, 108, 120 months
- Regressors: IP growth, Real interest rate (Coroneo, Giannone, Modugno 2016; Joslin, Priebsch, Singleton 2014).
- Full model allows for heterogeneous but potentially sparse slopes, up to five factors, heterogeneous, grouped or constant local dependence; W with one direct neighbor structure.
- ► Analysis: Full-sample, rolling windows (20 years; 324 windows).

Yield data

Excess returns

- Levels close to nonstationary; use excess returns instead (Bianchi, Büchner, Tamoni 2020).
- > $p_t^{(n)}$: Log price of zero coupon bond with maturity *n* at time *t*
- Log yield:

$$y_t^{(n)} = -\frac{1}{n} p_t^{(n)}$$
 (2)

▶ Log holding period return (buy *n*-year bond at time *t* and sell it as *n* − 1-year bond at *t* + 1):

$$r_{t+1}^{(n)} = p_{t+1}^{(n-1)} - p_t^{(n)}$$
(3)

Excess log return (our dependent variable):

$$rx_{t+1}^{(n)} = r_{t+1}^{(n)} - y_t^{(1)}$$
(4)

Excess return data

In-sample results

- ► Data-driven model selection via BIC.
- ▶ 5 factors selected for full sample.
- Macro variables play a minor role: real interest rate is deselected, some negative coefficients for IP growth.
- ► Local dependence:

~	Short		3m	бm	9m	12m	_			
~	Short.	0.	9947	0.9947	0.9947	0.8461	_			
~	Medium		15m	18	m 2	1m 2	4m	30m	36m	48m
V	Wiedium	•	0.716	6 0.86	00 0.9	817 0.9	9000	0.9000	0.8699	0.8699
⊳	- Long: -	6	0m	72m	84m	96m	1	.08m	120m	
	8-	0.8	3545	0.7559	0.7827	0.7827	0	.6184 C	.6184	

20

Rolling windows and out-of-sample prediction

- Re-estimation and penalty parameter choice in every window using 3y validation sample and mean absolute forecast error as criterion.
- ▶ Iterative out-of-sample forecasts for h = 1, 2, .., 12 months.
- ▶ VAR(3) forecasting model for IP growth and real interest rate.
- Benchmarks: Our model with only dynamic factors, expectation hypothesis (EH; unpredictable excess returns).
- Forecast evaluation using relative MAFEs and test for multi-horizon predictive ability.
- ▶ Evaluation period: January 1992 December 2019.

Empirical Application

Rolling windows: number of factors

Empirical Application

Rolling windows: number of regressors

Rolling windows: slopes IP growth

Empirical Application

Rolling windows: slopes real interest rate

Rolling windows: local dependence

Forecast comparison: HSE-DFM-X vs. EH

Forecast comparison: HSE-DFM-X vs. factors-only

*

Multi-horizon forecast comparison: EH

- ▶ Test for multi-horizon superior predictive ability (Quaedvlieg, 2019).
- ► Test statistics (based on MAFE):

	3 m	6 m	9 m	12 m	15 m	18 m
full sample pre-crisis financial crisis post-crisis	7.98* 5.34* 1.04 10.35*	6.87* 4.08* 1.75* 9.07*	6.13* 3.01* 0.78 9.78*	5.65* 2.35* 0.71 9.64*	4.94* 1.79* -0.03 9.33*	3.44* 0.75 -0.16 7.97*
	21 m	24 m	30 m	36 m	48 m	60 m
full sample pre-crisis financial crisis post-crisis	1.33* -0.46 0.05 4.13*	0.53 -0.69 -0.02 2.29*	-0.83 [†] -0.69 -0.38 -0.38	-1.24 [†] -0.73 [†] -0.22 -1.33 [†]	-1.52 [†] -0.88 [†] 0.48 -2.24 [†]	-1.76 [†] -1.08 [†] 0.56 -2.32 [†]
	72 m	84 m	96 m	108 m	120 m	
full sample pre-crisis financial crisis post-crisis	-1.99 [†] -1.27 [†] 0.23 -2.21 [†]	-1.98 [†] -1.29 [†] 0.22 -2.09 [†]	-2.26 [†] -1.66 [†] 0.00 -2.03 [†]	-2.57 [†] -1.93 [†] -0.30 -2.06 [†]	-3.15 [†] -2.02 [†] -0.84 -2.55 [†]	
HSE-DFM-X outp	erforms EH	$(\alpha = 10\%$), [†] EH out	performs H	ISE-DFM-X	$\alpha = 10\%$

* HSE-DF

Multi-horizon forecast comparison: factors-only

▶ Test for multi-horizon superior predictive ability (Quaedvlieg, 2019).

Test st	atistics	(based	on	MAF	E)	:
---------	----------	--------	----	-----	----	---

pre-crisis 5.39 4.27 3.08 2.32 1.67 0.51 financial crisis 0.68 0.49 -0.02 0.46 -0.39 -1.56 [†] post-crisis 9.81* 8.94* 9.72* 9.50* 9.26* 8.96* 21 m 24 m 30 m 36 m 48 m 60 m full sample 1.07* 0.18 -1.44 [†] -1.89 [†] -2.24 [†] -2.94 [†] francial crisis -0.82 [†] -1.21 [†] -1.29 [†] -1.20 [†] -1.25 [†] -1.43 [†] financial crisis -1.72 [†] -1.73 [†] -2.17 [†] -2.16 [†] -1.71 [†] -2.37 [†] post-crisis 6.94* 3.97* 0.43 -0.68 -1.62 [†] -2.21 [†] 72 m 84 m 96 m 108 m 120 m m full sample -2.92 [†] -2.40 [†] -2.40 [†] -2.40 [†] -2.40 [†] re-crisis -1.55 [†] -1.41 [†] -1.68 [†] -1.87 [†] -1.92 [†]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
post-crisis 9.81^{*} 8.94^{*} 9.72^{*} 9.50^{*} 9.26^{*} 8.96^{*} 21 m 24 m 30 m 36 m 48 m 60 m full sample 1.07^{*} 0.18 -1.44^{\dagger} -1.89^{\dagger} -2.24^{\dagger} -2.94^{\dagger} pre-crisis -0.82^{\dagger} -1.21^{\dagger} -1.29^{\dagger} -1.20^{\dagger} -1.25^{\dagger} -1.43^{\dagger} financial crisis -1.72^{\dagger} -1.73^{\dagger} -2.17^{\dagger} -2.24^{\dagger} -2.94^{\dagger} post-crisis 6.94^{*} 3.97^{*} 0.43 -0.68 -1.62^{\dagger} -2.21^{\dagger} 72 m 84 m 96 m 108 m 120 m m full sample -2.92^{\dagger} -2.40^{\dagger} -2.41^{\dagger} -2.40^{\dagger} pre-crisis -1.50^{\dagger} -1.43^{\dagger} -1.68^{\dagger} -1.87^{\dagger} -1.92^{\dagger}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} \text{pre-crisis} & -0.82^{\dagger} & -1.21^{\dagger} & -1.29^{\dagger} & -1.20^{\dagger} & -1.25^{\dagger} & -1.43^{\dagger} \\ \text{financial crisis} & -1.72^{\dagger} & -1.73^{\dagger} & -2.17^{\dagger} & -2.16^{\dagger} & -1.71^{\dagger} & -2.37^{\dagger} \\ \text{post-crisis} & 6.94^{\ast} & 3.97^{\ast} & 0.43 & -0.68 & -1.62^{\dagger} & -2.21^{\dagger} \\ \hline & 72 \text{ m} & 84 \text{ m} & 96 \text{ m} & 108 \text{ m} & 120 \text{ m} \\ \text{full sample} & -2.92^{\dagger} & -2.40^{\dagger} & -2.37^{\dagger} & -2.41^{\dagger} & -2.40^{\dagger} \\ \text{pre-crisis} & -1.50^{\dagger} & -1.41^{\dagger} & -1.68^{\dagger} & -1.87^{\dagger} & -1.92^{\dagger} \end{array}$
$ \begin{array}{c cccc} & -1.72^{\dagger} & -1.73^{\dagger} & -2.17^{\dagger} & -2.16^{\dagger} & -1.71^{\dagger} & -2.37^{\dagger} \\ \hline post-crisis & 6.94^{*} & 3.97^{*} & 0.43 & -0.68 & -1.62^{\dagger} & -2.21^{\dagger} \\ \hline & 72 & 84 & m & 96 & m & 108 & m & 120 & m \\ \hline full sample & -2.92^{\dagger} & -2.40^{\dagger} & -2.37^{\dagger} & -2.41^{\dagger} & -2.40^{\dagger} \\ pre-crisis & -1.50^{\dagger} & -1.41^{\dagger} & -1.68^{\dagger} & -1.87^{\dagger} & -1.92^{\dagger} \\ \end{array} $
post-crisis 6.94^* 3.97^* 0.43 -0.68 -1.62^{\dagger} -2.21^{\dagger} 72 m 84 m 96 m 108 m 120 m full sample -2.92^{\dagger} -2.40^{\dagger} -2.37^{\dagger} -2.41^{\dagger} -2.40^{\dagger} pre-crisis -1.50^{\dagger} -1.41^{\dagger} -1.68^{\dagger} -1.87^{\dagger} -1.92^{\dagger}
72 m 84 m 96 m 108 m 120 m full sample -2.92^{\dagger} -2.40^{\dagger} -2.37^{\dagger} -2.41^{\dagger} -2.40^{\dagger} pre-crisis -1.50^{\dagger} -1.41^{\dagger} -1.68^{\dagger} -1.87^{\dagger} -1.92^{\dagger}
full sample -2.92 [†] -2.40 [†] -2.37 [†] -2.41 [†] -2.40 [†] pre-crisis -1.50 [†] -1.41 [†] -1.68 [†] -1.87 [†] -1.92 [†]
pre-crisis -1.50^{\dagger} -1.41^{\dagger} -1.68^{\dagger} -1.87^{\dagger} -1.92^{\dagger}
financial crisis -2.19 [†] -1.65 [†] -1.47 [†] -1.40 [†] -1.26
post-crisis -2.12 [†] -1.57 [†] -1.32 [†] -1.14 [†] -1.22 [†]
X outperforms factors-only model ($lpha=$ 10%), † factors-only model outperforms H

Conclusion

- Agnostic method for empirical analysis of panel data with regressors as well as dependencies over cross-section and time.
- Tailored algorithm to efficiently combine estimation and model selection. Works in simulations.
- Some new insights on the properties of treasury yields (excess returns):
 - ▷ Even after controlling for up to five latent factors, local dependence appears to play an important role.
 - > Impact of macro variables on bond returns is time-varying.
 - Including model features in an adaptive way improves out-of-sample forecasting performance at the short end of the yield curve.

Thank you!