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Abstract

We perform a large–scale empirical study to evaluate the forecasting performance of Markov–
switching GARCH (MSGARCH) models compared with standard single–regime specifications. We
find that the need for a Markov–switching mechanism in GARCH models depends on the underlying
asset class on which it is applied. For stock data, we find strong evidence for MSGARCH while
this is not the case for stock indices and currencies. Moreover, Markov–switching GARCH models
with a conditional (skew) Normal distribution are not able to jointly account for the switch in the
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1. Introduction

“Modern society relies on the smooth functioning of banking and insurance systems and has

a collective interest in the stability of such systems.” (McNeil et al., 2005). This statement is

especially true since the global financial crisis of 2008. Following the regulatory process of the Basel

Accords (currently the Basel III Accords), financial institutions of leading nations are obliged to

meet stringent capital requirements and rely on state–of–the–art risk management systems (Board

of Governors of the Federal Reserve Systems, 2012). Better risk management practices lead to a

higher stability of the economy and have obvious social benefits: Guarantying the pension plan of

current and future retirees is an example. There is, therefore, a strong need for backtesting existing

risk models and comparing the estimation techniques used to calibrate these models.

Modeling the volatility of financial markets is central in risk management. Research on modeling

volatility dynamics using time series models has been active since the creation of the original ARCH

model by Engle (1982) and its generalization by Bollerslev (1986). From there, multiple extensions

of the standard ARCH scedastic function have been proposed to capture additional stylized facts

observed in financial markets. These so–called GARCH–type models recognize that there may be

important nonlinearities, asymmetries, and long–memory properties in the volatility process; see

Bollerslev et al. (1992), Bollerslev et al. (1994) and Engle (2004) for a review.

Recent studies show that estimates of GARCH–type models can be biased by structural breaks

in the volatility dynamics (see, e.g., Bauwens et al., 2010, 2014). These breaks typically occur during

periods of financial turmoil. Estimating a GARCH model on data displaying a structural break

yields a non–stationary estimated model and implies poor risk predictions. A way to cope with

this problem is provided by Markov–switching GARCH models (MSGARCH) whose parameters

can change over time according to a discrete latent (i.e., unobservable) variable. These models can

quickly adapt to variations in the unconditional volatility level, which improves risk predictions

(see, e.g., Marcucci, 2005; Ardia, 2008).

The first contribution of this paper is to investigate if MSGARCH models provide risk managers

and regulators with useful new methodologies for improving the risk forecasts of their portfolios.1

1
This study focuses exclusively on GARCH and MSGARCH models. GARCH is a workhorse in financial econo-
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To answer this question, we perform a large–scale backtesting experiment in which we compare

the forecasting performance of single–regime and Markov–switching GARCH models. As financial

institutions invest in a large set of securities over different asset classes, our study is conducted on

a vast universe of stocks (i.e., four hundred), eleven equity indices and eight foreign exchange rates.

To our knowledge, this is the first empirical study which assesses the performance of MSGARCH

models on such a large cross–section of assets. For single–regime and regime–switching specifica-

tions, the scedastic models considered account for different reactions in the conditional volatility

of past asset returns. More precisely, we consider the symmetric GARCH model (Bollerslev, 1986)

as well as asymmetric GJR model (Glosten et al., 1993). These scedastic specifications are inte-

grated into the MSGARCH framework with the approach of Haas et al. (2004). For the conditional

distributions (which are regime–dependent), we use the symmetric and skewed versions of the Nor-

mal and Student–t distributions, using the approach by Fernández and Steel (1998). Overall, this

leads to sixteen models. Thus, differently from Hansen and Lunde (2005), who compare a large

number of GARCH–type models on few series, we focus on few GARCH and MSGARCH models

and a large number of series. The forecasting performance is tested for each time series and is

based on 2,000 out–of–sample daily (percentage) log–returns. The backtesting period ranges from

(approximatively) 2005 to 2016. We take a risk management perspective and assess the statistical

and economical performance of the various models in forecasting the left–tail (i.e., losses) of the

conditional distribution of the assets’ returns.

GARCH and MSGARCH models are traditionally estimated by the Maximum Likelihood (ML)

technique; see for instance Haas et al. (2004), Marcucci (2005) and Augustyniak (2014). However,

several recent studies have shown the advantages of the Bayesian approach (see, e.g., Ardia, 2008;

Ardia and Hoogerheide, 2010; Bauwens et al., 2010, 2014). In particular, appropriate Markov chain

metrics, has been investigated for decades, and is widely used by practitioners. MSGARCH is the most natural and
straightforward extension to GARCH. It is therefore interesting to see if it adds any value to the toolkit of a risk
manager. Extensions to stochastic volatility (SV) models (Taylor, 1994; Jacquier et al., 1994) or realized measures
volatility models (RV) such as HEAVY (Shephard and Sheppard, 2010) or Realized GARCH (Hansen et al., 2011)
are of course possible. However, SV models are sensitive to the implementation, as pointed out by Bos (2012). RV
models require high–frequency data to deliver daily volatility forecasts. Backtesting RV models over a universe of
hundred of stocks, as done in our study, is a challenging task. Moreover, to the best of our knowledge, RV models
are used by (some) volatility–trading hedge funds, but are not standard risk models implemented by major banks or
financial institutions. We, therefore, leave it for further research.
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Monte Carlo (MCMC) procedures can explore the joint posterior distribution of the model param-

eters, and avoid local maxima (i.e., non–convergence or convergence to wrong values) encountered

via ML estimation. Moreover, parameter uncertainty is naturally integrated into the risk forecasts

via the predictive distribution. As shown by Hoogerheide et al. (2012) in the context of single–

regime GARCH models, integrating parameter uncertainty with the Bayesian approach is key to

successfully forecast more accurately the left–tail of the return distribution, that is, the losses.

The second contribution of this paper is thus to investigate the advantages of the Bayesian

approach compared with the traditional ML technique for GARCH and MSGARCH models. In

particular, we test if integrating the parameter uncertainty translates into better risk measures

forecasts. As for the ML estimation, the backtest experiment is performed for the large universe of

stocks and indices, thus providing more significant results for practitioners. We, therefore, extend

the study by Hoogerheide et al. (2012) both on the data and on the model dimensions. We rely on

the adaptive sampler by Vihola (2012) for the MCMC estimation of the various models. To cope

with the large computing time of the experiment, all computations are performed in parallel on

several large clusters with the MSGARCH package (Ardia et al., 2016b), which efficiently implements

the various models in C++.

Overall, our empirical results can be summarized as follows. First, the need for a Markov–

switching mechanism in GARCH models depends on the underlying asset class on which it is

applied. For stock data, we find strong evidence in favor of MSGARCH while this is not the case for

stock indices and currencies. This can be explained by the large (un)conditional kurtosis observed

for the log–returns of stock data. Second, Markov–switching GARCH models with a conditional

(skew) Normal distribution are not able to jointly account for the switch in the parameters as well

as for the excess of kurtosis exhibited from the data; hence, Markov–switching GARCH models

with a (skew) Student–t specification are usually required. Finally, accounting for the parameter

uncertainty (i.e., integrating the parameter uncertainty into the predictive distribution) via MCMC

is necessary for stock data.

The paper proceeds as follows. Model specification, estimation, and forecasting are presented in

Section 2. The datasets, the backtesting design, and the empirical results are discussed in Section 3.
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Section 4 concludes.

2. Markov–switching GARCH models

2.1. Model specification

Let yt ∈ R be the (percentage) log–return of a financial asset at time t. Our general Markov–

switching GARCH specification assumes that:

yt | (st = k, It−1) ∼ D(0, hk,t, ξk) , (1)

where D(0, hk,t, ξk) is a continuous distribution with zero mean, time–varying variance hk,t, and

additional shape parameters gathered in the vector ξk. Furthermore, we assume that the integer–

valued stochastic variable st, defined on the discrete space {1, . . . ,K}, evolves according to an

unobserved first order ergodic homogeneous Markov chain with transition probability matrix P ≡

{pi,j}
K
i,j=1, with pi,j ≡ P[st = j | st−1 = i]. We denote by It−1 the information set up to time t− 1,

i.e., It−1 ≡ {yt−i, i > 0}.

Given the parametrization of D(·), we have E[y2t | st = k, It−1, ] = hk,t, that is, hk,t is the

variance of yt conditional on the realization of st. Note that the conditional mean of the return is

assumed to be zero across time and regimes.

As in Haas et al. (2004), the conditional variance of yt is assumed to follow a GARCH–type

model. Hence, conditionally on regime st = k, hk,t is available as a function of past returns and

the additional regime–dependent vector of parameters θk:

hk,t ≡ λ(yt−1, hk,t−1,θk) , (2)

where λ(·) is a It−1–measurable function which defines the filter for the conditional variance and

also ensures its positiveness. We further assume that hk,1 ≡ h̄k (k = 1, . . . ,K), where h̄k is a fixed

initial volatility level for regime k, that we set equal to the long–run unconditional volatility in

regime k. Depending on the shape of λ(·), we obtain different scedastic specifications. For instance,
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if:

hk,t ≡ ωk + αky
2
t−1 + βkhk,t−1 , (3)

with ωk > 0, αk ≥ 0 and αk + βk < 1 (k = 1, . . . ,K), we recover the Markov–switching GARCH

model (MSGARCH (K)) of Haas et al. (2004). In this case θk ≡ (ωk, αk, βk)
′.

More flexible definitions of the filter λ(·) can be easily incorporated in the model. In order

to account for the well–known asymmetric reaction of volatility to the sign of past returns (often

referred to as the leverage effect ; see Black (1976)), we can specify a Markov–switching GJR model

with K regimes exploiting the volatility specification of Glosten et al. (1993):

hk,t ≡ ωk + (αk + γkI{yt−1 < 0}) y2t−1 + βkhk,t−1 , (4)

where I{·} is the indicator function equal to one if the condition holds, and zero otherwise. In

this case, the additional parameter γk > 0 controls the asymmetry in the conditional volatility

process. We have θk ≡ (ωk, αk, γk, βk)
′. Stationarity of the volatility process conditionally on the

Markovian state is achieved by imposing αk + βk + κkγk < 1, where κk ≡ P[yt < 0 | st = k, It−1].

For symmetric distributions we have κk = 1/2. For skewed distributions, κk is obtained following

the approach of Trottier and Ardia (2016).

As stated in the introduction, we consider different choices for D(·). We take the standard

Normal, N , and the fat–tailed Student–t distribution, S. Note that since E[yt | st = k, It−t] = 0 for

all k = 1, . . . ,K, the distribution of yt | It−1 is symmetric by construction. In order to investigate

the benefits of incorporating skewness in our large–scale analysis, we also consider the skewed

version of N and S using the mechanism of Fernández and Steel (1998). Hence, we recover

the skew–Normal, skN , and the skew–Student–t, skS. Standardized skewed distributions are

parametrized as in Bauwens and Laurent (2005) such that they have zero mean and unit variance;

see Trottier and Ardia (2016).

Overall, our model set includes 16 different specifications recovered as combinations of:

� The number of regimes, K ∈ {1, 2}. When K = 1, we label our specification as single–regime

(SR);
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� The filter for the conditional volatility process: GARCH and GJR;

� The choice of the conditional distribution D(·), i.e., D ∈ {N ,S, skN , skS}.2

2.2. Estimation

We estimate the models either by ML or by MCMC techniques (Bayesian estimation). Both

approaches require the evaluation of the likelihood function.

In order to write the likelihood function corresponding to the MSGARCH model specifica-

tion (1), we define the vector of log-returns y ≡ (y1, . . . , yT )′ and we regroup the model parameters

into the vector Ψ ≡ (ξ1,θ1, . . . , ξK ,θK ,P). The conditional density of yt in state st = k given Ψ

and It−1 is denoted by fD(yt | st = k,Ψ, It−1).

By integrating out the state variable st, we can obtain the density of yt given Ψ and It−1 only.

The (discrete) integration is obtained as follows:

f(yt |Ψ, It−1) ≡
K∑
i=1

K∑
j=1

pi,j ηi,t−1 fD(yt | st = j,Ψ, It−1) , (5)

where ηi,t−1 ≡ P[st−1 = i |Ψ, It−1] is the filtered probability of state i at time t − 1 and where we

recall that pi,j denotes the transition probability of moving from state i to state j. The filtered

probabilities {ηk,t; k = 1, . . . ,K; t = 1, . . . , T} are obtained by an iterative algorithm similar in

spirit to a Kalman filter; we refer the reader to Hamilton (1989) and Hamilton (1994, Chapter 22)

for details.

Finally, the likelihood function is obtained from (5) as follows:

L(Ψ |y) ≡
T∏
t=1

f(yt |Ψ, It−1) . (6)

The ML estimator Ψ̂ is obtained by maximizing the logarithm of (6) (or minimizing the negative

logarithm value). In the case of MCMC estimation, the likelihood function is combined with a

diffuse (truncated) prior f(Ψ) to build the kernel of the posterior distribution f(Ψ |y). As the

2
We also tested the asymmetric EGARCH scedastic specification (Nelson, 1991) as well as alternative fat–tailed

distributions, such at the Laplace distribution. The performance results were qualitatively similar.
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posterior is of an unknown form (the normalizing constant is numerically intractable), it must be

approximated by simulation techniques. In our case, draws from the posterior are generated with

the adaptive random–walk Metropolis sampler of Vihola (2012). We use 50,000 burn–in draws

and build the posterior sample of size 1,000 with the next 50,000 draws keeping only every 50th

draws to diminish autocorrelation in the chain.3 For both ML and MCMC estimations, we ensure

positivity and stationarity of the conditional variance in each state during the estimation.

2.3. Density and VaR forecasting

Generating one–step ahead density and VaR forecasts with MSGARCH models is straightfor-

ward. First, note that the one–step ahead conditional probability density function (PDF) of yt+1

is a mixture of K regime–dependent distributions:

f(yt+1 |Ψ, It) ≡
K∑
k=1

πk,t+1fD(yt+1; 0, hk,t+1, ξk) , (7)

with mixing weights πk,t+1 ≡
∑K

i=1 pi,kηi,t where ηi,t ≡ P[st = i |Ψ, It] (i = 1, . . . ,K) are the

filtered probabilities at time t. The cumulative density function (CDF) is obtained from (7) as

follows:

F (y |Ψ, It) ≡ P[yt+1 ≤ y |Ψ, It] =

∫ y

−∞
f(yt+1 |Ψ, It)dyt+1 . (8)

Within the ML framework, the predictive PDF and CDF are simply computed by replacing Ψ by

the ML estimator Ψ̂ in (7) and (8). Within the MCMC framework, we proceed differently, and

we integrate out the parameter uncertainty. Given a posterior sample {Ψ[m],m = 1, . . . ,M}, the

predictive PDF is obtained as:

f(yt+1 | It) ≡
∫
Ψ
f(yt+1 |Ψ, It)dΨ ≈ 1

M

M∑
m=1

f(yt+1 |Ψ
[m], It) , (9)

3
We performed several sensitivity analyses to assess the implication of the estimation setup. First, we changed

the hyper–parameter values. Second, we ran longer MCMC chains. Third, we used 10,000 posterior draws instead of
1,000. Finally, we tested an alternative MCMC sampler based on adaptive mixtures of Student–t distribution (Ardia
et al., 2009). In all cases, the conclusions remained qualitatively similar.
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and the predictive CDF is given by:

F (yt+1 | It) ≡
∫ yt+1

−∞
f(u | It)du . (10)

Both for the ML and MCMC estimation, the VaR is estimated as a quantile of the predictive

density, by numerically inverting the predictive CDF. For instance, in the MCMC framework, the

VaR at the α risk level is estimated as:

VaRα
t+1 ≡ {yt+1 ∈ R |F (yt+1 | It) = α} . (11)

In our empirical application, we consider the VaR at the 1% and 5% risk levels.

3. Large–scale empirical study

We use 1,500 log-returns (in percent) for the fit and run the backtest over 2,000 out-of-sample

log-returns for a period ranging from October 10, 2008, to November 17, 2016 (data start in

December 26, 2002). For each time series on which the backtest is applied, we first remove the

unconditional mean and autocorrelation by using an AR(1)–filter, thus focusing on the conditional

variance dynamics. Each model is estimated on a rolling window basis, and one–step ahead density

forecasts are obtained. From the density, we compute the VaR at the 1% and 5% risk levels.

3.1. Datasets

We test the performance of various models on several universes:

� A set of four hundred stocks on the US market, selected withing the constituents of the S&P

500 index as of November 2016;

� A set of eleven stock indices: (1) S&P 500 (US; SPX), (2) FTSE 100 (UK; FTSE), (3) CAC

40 (France; FCHI), (4) DAX 30 (Germany; GDAXI), (5) Nikkei 225 (Japan; N225), (6)

Hang Seng (China, HSI), (7) Dow Jones Industrial Average (US; DJI), (8) Euro Stoxx 50

(Europe; STOXX50), (9) KOSPI (South Corea; KS11), (10) S&P/TSX Composite (Canada;

GSPTSE), and (11) SMI (Switzerland; SSMI);
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� A set of eight currencies: USD against CAD, DKK, NOK, AUD, CHF, GBP, JPY, and EUR.

Each dataset is expressed in local currency. For all datasets, we compute the daily percentage

log–return series defined by yt ≡ 100× (log(Pt)− log(Pt−1)), where Pt is the adjusted closing price

(index) on day t. Data are retrieved from Datastream. The data are filtered for liquidity following

Lesmond et al. (1999).

In Table 1, we report the summary statistics on the 2,000 out–of–sample log–returns for the

assets in the various universes. The left part of the table presents unconditional moments, while

the right part presents the average of the statistics computed over 250–day rolling windows. We

note the higher volatility in the universe of stocks, followed by stock indices and currencies. All

assets exhibit negative skewness, with larger values for stocks, while currencies seem to behave

more symmetrically. Finally, we observe a significant kurtosis for stocks, unconditionally but

also on a rolling–window basis. Fat tails are also present for stock indices and currencies, but

less pronounced though. From these empirical facts, we anticipate best performance for model

accounting for skewed and fat–tailed conditional distributions.

[Insert Table 1 about here.]

3.2. Forecasting performance tests

We assess the quality of left–tail risk forecasts via several standard tests used in financial risk

management.

First, we focus on the VaR forecasts at the 1% and 5% risk levels. The first test used is

the conditional coverage (CC) approach by Christoffersen (1998), the common extension of the

unconditional coverage (UC) test by Kupiec (1995). This approach is based on the study of the

hit sequence Iαt ≡ I{yt ≤ VaRα
t }, where VaRα

t denotes the VaR prediction at time t for risk level

α, and I{·} is the indicator function equal to one if the condition holds, and zero otherwise. A

sequence of VaR forecasts at risk level α has correct conditional coverage if {Iαt ; t = 1, . . . ,H} is

an independent and identically distributed sequence of Bernoulli random variables with parameter

α. This hypothesis can be verified by testing jointly the independence on the series and the

unconditional coverage of the VaR forecasts.
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The second test considered to assess the quality of VaR forecasts for risk levels at 1% and

5% is the dynamic quantile (DQ) approach by Engle and Manganelli (2004). This method jointly

tests for UC and CC and has more power than previous alternatives under some form of model

misspecification. The series of interest is defined as {Iαt − α; t = 1, . . . ,H}. Under correct model

specification, we have the following moment conditions: E[Iαt − α] = 0, E[Iαt − α | It−1] = 0,

E[(Iαt − α)(Iα
t
′ − α)] = 0 for t 6= t′; see Engle and Manganelli (2004).

Third, we follow González-Rivera et al. (2004) and McAleer and Da Veiga (2008) and use the

(tick) asymmetric linear losses induced by our VaR forecasts. Formally, given a VaR prediction at

risk level α for time t, the associated quantile loss (QL) is defined as:

QLαt ≡ (α− Iαt )(yt −VaRα
t ) .

Evidently, QL is an asymmetric loss function that penalizes more heavily with weight (1− α) the

observations for which we observe returns VaR exceedance. Quantile losses are then compared

between models over the out–of–sample period. We discriminate between models using the ap-

proach by Diebold and Mariano (1995), with the heteroscedasticity and autocorrelation robust

(HAC) standard error estimators of Andrews (1991) and Andrews and Monahan (1992). As our

VaR forecasts are generated in some cases by nested models, the DM test statistics does not have

standard distribution under the null (Diebold, 2015). We therefore use the critical values obtained

from bootstrap, as detailed in Clark and McCracken (2012).

Finally, in addition to the QL function, we also consider the weighed Continuous Ranked

Probability Score (wCRPS) introduced by Gneiting and Ranjan (2011) as a generalization of the

well–known CRPS scoring rule (Matheson and Winkler, 1976). wCRPS is a proper scoring rule

which permits us to compare the predictive ability of different models over a particular region of

the support.4 Following the notation introduced in Section 2, wCRPS for a forecast at time t+ 1

4
Given a random variable y ∈ R with continuous probability density function f , the scoring rule S(f, y) is said

to be proper if and only if Ef [S(f, y)] =
∫
R f(y)S(f, y)dy ≤

∫
R f(y)S(g, y)dy = Ef [S(g, y)] for all density functions f

and g.
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is defined as:

wCRPSt+1 ≡
∫
R
ω(z) (F (z | It)− I{yt+1 < z})2 dz) ,

where ω : R → R+ is a continuous weight function which emphasizes regions of interest of the

predictive distribution, such as the tails or the center. Evidently, the wCRPS measures the distance

between the predicted CDF, F (yt+1 | It), and the empirical CDF represented as a step function in

yt+1. Averaging the wCRPS over the out–of–sample period provides the quantity at the base of

our comparative analysis. Models with lower averaged wCRPS are preferred.

Since our focus is on the left tail of the returns distribution, following Gneiting and Ranjan

(2011), we use ω(z) ≡ 1 − Φ(z), where Φ is the CDF of a standard Gaussian distribution. This

way, discrepancies between the left tail of the returns distribution are weighed more than those

referred to the right tail.5

3.3. Results

We now answer the general question: Does the inclusion of a Markov–switching mechanism for

the returns distribution improve VaR predictions ? Indeed, while there is plenty of evidence con-

cerning the benefits of accounting for skewness (De Luca et al., 2006; Franceschini and Loperfido,

2010; Luca and Loperfido, 2015), excess kurtosis (Bollerslev, 1987), asymmetries in the volatility

dynamics (Nelson, 1991; Zakoian, 1994) and parameters uncertainty (Ardia et al., 2012) for volatil-

ity modeling, we aim to investigate to which extent including Markov–switching improves over

single–regime models VaR predictions, while accounting for others well–known features of financial

returns.

We answer this question relying on the large–scale performance study over a broad universe of

assets, as previously detailed. The experiment proceeds with two approaches, which we refer to

“Backtesting performance” and “Pairwise performance”.

5
We compute wCRPS with the following approximation:

wCRPSt+1 ≈
yu − yl
I − 1

I∑
i=1

w(yi) (F (yi | It)− I{yt+1 < yi})
2
,

where yi ≡ yl + i× (yu − yl)/I and yu and yl are the upper and lower values, which defines the range of integration.
The accuracy of the approximation can be increased to any desired level by I. In this paper, we set yl = −100,
yu = 100 and I = 1,000, which work well for daily returns in percentage points.
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3.3.1. Backtesting

We backtest the VaR predictions delivered by MSGARCH and GARCH models using CC and

DQ tests on each series of 2,000 out–of–sample observations. Then, we measure the number of

times we reject the null hypothesis of accurate VaR forecast at the 5% significance level for all

asset classes, and we compare the results. In the case of stocks, as the universe is large and

therefore prone to false positives, the frequency of rejections is corrected for Type I error using the

false discovery rate (FDR) approach by Storey (2002).

Table 2 reports the comparison between Markov–switching (MS) and single–regime (SR) GARCH

models estimated by MCMC or ML for all asset classes. Panels A and B summarize the results for

the CC test and Panels C and D for the DQ test. In light gray, we report the significantly lowest

percentage (at the 5% level) between MS and SR specifications, for a given model, estimation

method and data set. This is obtained by performing a t–test between the rejection frequencies

with robust estimation of the standard error. The star sign (?) indicates for a given model and

data set if there is a significantly outperforming specification (MS vs. SR and ML vs. MCMC).

[Insert Table 2 about here.]

CC test. At both VaR risk levels, we find that MS specifications are favored for all datasets.

Improvements of MS over SR are usually of larger magnitude when we consider Normal and skewed

Normal conditional distribution.6 For instance, for stock data and 1% risk level, MS GARCH N

estimated via MCMC reports a 1.5% rejections frequency while its SR counterpart rejects 22.75% of

the time. Concerning the same MS specification but estimated via ML, the frequency of rejections

increases from 1.5% to 3% indicating that in this case, MCMC inference helps to improve VaR

forecast delivered by MSGARCH models. However, the evidence for MCMC inference over ML

is mixed across asset classes. While for stocks data MCMC is generally favored, for stock indices

and currencies we cannot see a clear picture. Interesting, we find that MS results are generally

unaffected by the chosen risk level. For instance, the rejection frequencies for MS specification for

at 1% and 5% risk levels are quite similar while results from SR specifications are generally affected

6
For Markov–switching models with conditional distribution, we refer to the distribution of returns conditionally

on past information and the realization of the Markov process.
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by this choice. Overall, the lowest rejection frequencies are obtained for the GJR scedastic function

together with a fat–tailed asymmetric distribution. For this particular specification, MS and SR

perform equally well, but when estimated via ML for stock data.

DQ test. Results provided by the DQ test, both for the 1% or 5%–VaR, exhibit higher rejection fre-

quencies. For all asset classes, an asymmetric GJR specification with skewed Student–t is required.

Again, MS models are preferred over SR specifications. At the 5% risk level, results for stocks in-

dicate that MCMC outperforms ML estimation technique for most specification. Remarkably, the

single–regime GJR skS model performs very well again. Results are also consistent across CC and

DQ tests. Specifically, for DQ we also find that accounting for parameter uncertainty is important

for stock data at both risk levels; rejection frequencies for MS models estimated via MCMC are

generally lower than those reported by the analogs specifications estimated via ML. For other asset

classes, results with respect to the estimation procedure are mixed again, thus indicating that this

result is asset–specific.

Overall, backtesting tests indicate that MSGARCH models are generally preferred over single–

regime models, independently of the specification of the scedastic function. This is especially so for

the universe of stocks and stock indices, while for currencies both models report very satisfactory

results and essentially perform equally well. We observe that Markov–switching models provide

sensible gains over single–regime models at both risk levels. For example, when the model is

conditionally Normal and estimated via MCMC, the DQ test rejects 29.5% of times for MSGARCH

and 58.75% of times for GARCH in the case of 5%–VaR, and 14.5% of times versus 23.75% in the

case of 1%–VaR. Results are similar for the CC test. Notably, we find that for 5%–VaR, MSGARCH

provides almost no rejections for the CC tests across all the considered specifications with Normal

and skewed–Normal conditional distributions, while GARCH models reject the null with a rate of

about 30%. Differently, if we consider the Student–t and skewed–Student–t cases, then MSGARCH

and GARCH models perform similarly well, even if the latter provide slightly better results. Our

findings indicate that assuming a fat–tailed conditional distribution for both Markov–switching and

single–regime models is of primary importance and delivers excellent results at both risk levels.

Heterogeneous results with respect to the different asset classes are obviously related to the
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various characteristics of the data detailed in Table 1. It is not surprising that MSGARCH models

perform better for stocks, as they are characterized by a higher (un)conditional kurtosis.

3.3.2. Pairwise comparison

We compare now MS and SR models in terms of QL and wCRPS measures. To that end,

for each model specification and asset in a universe, we compute the DM statistics of the QL

and wCRPS differentials between MS and SR models and determine if it is significantly different

from zero at the 1% level.7 Results are presented in Table 3, where a negative (positive) value

indicates outperformance (underperformance) of MSGARCH against GARCH specification. In

light (dark) gray, we emphasize cases of significant outperformance of MS (SR) models. All models

are estimated by MCMC.8

[Insert Table 3 about here.]

QL test. Results for the QL pairwise comparison do not allow to discriminate between MS and SR

for the various model specifications, except for the universe of stocks in the case of the 5%–VaR.

In this case, the DM statistics are significantly negative for all model specification, but the GJR

skS model, which however exhibit a negative DM statistics at -1.81.

wCRPS. The results for wCRPS favor MS models with negative values observed for all asset

classes and model specifications. In particular, significant values are observed for the universe of

stocks (except the GJR skS). For the universe of stock indices, significant values are observed for

GARCH with Normal and skewed Normal distributions. In the case of currencies, MSGARCH

is significantly outperforming single–regime models for the GARCH with (skewed) Normal and

symmetric Student–t distributions.

3.3.3. Full pairwise model comparison

As the last step in our analysis, we analyze in more details the wCRPS performance for the

full set of Markov–switching specifications, versus the single–regimes counter–parts. The analysis

7
We take a more conservative view here, as we cannot correct for false discoveries.

8
Results with models estimated by ML are similar.
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is again conducted on the three universes of assets. Results are reported in Table 4. In light (dark)

gray we highlight the significantly better performance of MS (SR) models (at the 1% significance

level, based on a DM test).

[Insert Table 4 about here.]

Let us consider first the universe of 400 stocks. We note that the MS specification is always bet-

ter than SR in the case of Normal and skewed Normal conditional distributions. This result should

be principally attributed to the fact that the one–step ahead predictive distribution delivered from

MS is fat–tailed even if the state dependent densities are not. Moreover, we notice that the GJR

specification is important for this class of assets, as the wCRPS value decreases when considering

GARCH vs. GJR or GJR vs. GARCH. Another interesting feature is the outperformance of SR

when accounting for conditional fat–tails while MS is based on the normal distribution. Hence,

the MS mechanism itself is not sufficient to introduce enough conditional kurtosis in the data; a

fat–tailed Student–t distribution is required. Indeed, is hard to believe that the MS mechanism can

contemporaneously fully account for the switch in the parameters controlling the evolution of the

conditional volatility and also provide predictive distribution with remarkably fat–tails. Looking

at the GJR skS case, which is the most general specification we consider, we find that MS still

reports lower values for wCRPS over SR, even if the difference is not statistically significant at the

1% confidence level.

Results are similar for the universe of the eleven stock indices. MS models generally report lower

wCRPS values over SR. However, differences between MS and SR are less pronounced, indeed,

while for stocks data the average differences with respect to GARCH N are around 9 points, for

stock indices average differences are around 5–6 points. Furthermore, for stock indices data the

DM test rejects less frequently the null of equal predictive ability across the two specifications.

Consistently with previous results, we find that for currencies, the gain of including MS de-

creases substantially. However, results remain highly significant in most of the cases. Similar

to other asset classes, SR models with a fat–tailed conditional distribution outperform MS with

Normal and skewed Normal conditional distribution.
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4. Conclusion

In this paper, we tested if MSGARCH models provide risk managers and regulators with useful

new methodologies for improving the risk forecasts of their portfolios. As financial institutions

invest in a large set of securities over different asset classes, our study is conducted on a very large

universe of stocks, equity indices, and foreign exchange rates.

Our empirical results can be summarized as follows. First, the need for a Markov–switching

mechanism in GARCH models depends on the underlying asset class on which it is applied. For

stock data, we find strong evidence for MSGARCH while this is not the case for stock indices

and currencies. This result can be explained by the large (un)conditional kurtosis observed for

the log–returns in stock data. Second, Markov–switching GARCH models with a (skew) Normal

distribution are not able to jointly account for the switch in the parameters as well as for the

excess of kurtosis exhibited from the data; hence, Markov–switching GARCH models with a (skew)

Student–t specification are usually required. Finally, accounting for the parameter uncertainty (i.e.,

integrating the parameter uncertainty into the predictive distribution) is necessary for stock data.

Our study could be extended in numerous ways. First, additional universes could be considered.

In particular, we plan to add commodities and emerging markets data. As MSGARCH models are

able to deal quickly with changes in the unconditional level of the volatility, contrary single–regime

GARCH models, it would be interesting to investigate multi–step ahead risk forecasts. Finally, our

study considered single–regime versus two–state Markov–switching specifications. It would be of

interest to see if a third regime leads to superior performance, and also, if the optimal number of

regime (in the Akaike, BIC or DIC sense) change over time, and is different across the data sets.
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Table 1: Data summary statistics
The table presents the summary statistics for the three asset classes used in our study. We report the
standard deviation (Std), the skewness (Skew) and the kurtosis (Kurt) on an unconditional and rolling–
windows basis for the 2,000 out–of–sample observations. The rolling window is based on 250 observations,
and we report the average statistics over 1750 windows. For each statistic, we compute the 25th, 50th and
75th percentiles of the whole universe of assets.

Unconditional Rolling windows

Std Skew Kurt Std Skew Kurt

Panel A: Stocks
25th 1.48 −0.38 6.87 1.34 −0.30 4.92
50th 1.89 −0.13 9.19 1.68 −0.16 6.05
75th 2.31 0.12 14.08 2.03 0.00 8.55

Panel B: Stock indices
25th 1.07 −0.40 6.07 1.00 −0.37 4.22
50th 1.15 −0.23 7.29 1.02 −0.21 4.66
75th 1.39 −0.17 10.29 1.28 −0.18 4.82

Panel C: Currencies
25th 0.61 −0.53 4.36 0.58 −0.16 4.05
50th 0.62 −0.08 4.51 0.60 −0.01 4.16
75th 0.77 0.05 11.60 0.73 0.09 6.05
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Table 2: VaR performance results
The table presents the percentage of rejections for the 1%–VaR (Panels A and C) and 5%–VaR (Panels B
and D) coverage tests (at the 5% significance level) of the Markov–switching (MS) and single–regime (SR)
models for the various universes of assets (400 stocks, 11 stock indices and 8 currencies) and estimated via
MCMC or ML techniques. The considered tests are the conditional coverage test (CC, Panels A and B) by
Christoffersen (1998) and the Dynamic Quantile test (DQ, Panels C and D) by Engle and Manganelli (2004).
Each test is applied to a given time series for a given model with 2,000 out–of–sample observations. In the
case of stocks, as the universe is large and therefore prone to false positives, the frequency of rejections is
corrected for Type I error using the false discovery rate (FDR) approach by Storey (2002). In light gray,
we report the lowest significant (at the 5% confidence level) percentage between Markov–switching and
single–regime models, for a given data set and a given model specification. The star sign (?) indicates the
lowest percentage (at the 5% confidence level) for a given asset class. Significance is determined via a t–test
between the percentages with robust estimation of the standard error.

Stocks Stock indices Currencies

MCMC ML MCMC ML MCMC ML

Model MS SR MS SR MS SR MS SR MS SR MS SR

Panel A: CC 1%–VaR

GARCH N 1.50 22.75 3.00 22.75 81.82 100.00 72.73 90.91 37.50 12.50 25.00 25.00
GARCH skN 0.00 12.00 1.25 13.00 0.00 72.73 0.00 54.55 0.00 12.50 0.00 12.50
GARCH S 0.00 1.00 0.00 0.50 45.45 72.73 63.64 45.45 0.00 12.50 12.50 12.50
GARCH skS 0.00 0.25 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GJR N 0.50 14.50 0.50 12.50 45.45 90.91 54.55 90.91 12.50 25.00 25.00 25.00
GJR skN 0.25 6.25 0.00 2.50 0.00 54.55 0.00 45.45 25.00 0.00 0.00 0.00
GJR S 0.00 0.00 0.00 0.50 36.36 27.27 27.27 36.36 0.00 0.00 12.50 12.50
GJR skS 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel B: CC 5%–VaR

GARCH N 1.50? 31.75 3.00 33.00 36.36 27.27 27.27 27.27 25.00 25.00 12.50 12.50
GARCH skN 0.50 34.50 1.75 34.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GARCH S 1.00 2.00 2.25 2.75 54.55 45.45 54.55 63.64 0.00 0.00 0.00 0.00
GARCH skS 0.00 0.75 0.00 1.75 0.00 0.00 0.00 0.00 12.50 0.00 0.00 0.00
GJR N 0.00? 29.75 0.00 29.75 18.18 9.09 18.18 18.18 25.00 0.00 12.50 12.50
GJR skN 0.00? 33.75 0.00 32.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GJR S 0.25 0.25 0.00 1.00 18.18 27.27 9.09 18.18 12.50 0.00 12.50 0.00
GJR skS 0.00 0.25 0.00 0.00 9.09 9.09 0.00 18.18 0.00 0.00 0.00 0.00

Panel C: DQ 1%–VaR
GARCH N 29.50 58.75 30.25 62.25 81.82 100.00 63.64 90.91 25.00 37.50 25.00 37.50
GARCH skN 21.50 53.25 28.25 57.00 36.36? 72.73 54.55 81.82 0.00? 37.50 12.50 37.50
GARCH S 28.25? 30.00 35.00 37.00 63.64 72.73 72.73 63.64 37.50 25.00 12.50 12.50
GARCH skS 24.25? 26.75 31.25 32.00 45.45 45.45 45.45 45.45 25.00 12.50 12.50 12.50
GJR N 14.75 44.00 14.75 47.75 63.64 90.91 63.64 90.91 25.00 37.50 12.50 37.50
GJR skN 10.25 33.75 11.50 41.25 9.09 54.55 0.00 54.55 25.00 25.00 12.50 25.00
GJR S 9.75 13.00 13.75 19.25 36.36 27.27 54.55 54.55 25.00 25.00 25.00 25.00
GJR skS 11.75 12.00 12.25 17.75 9.09 9.09 0.00 0.00 12.50 25.00 12.50 25.00

Panel D: DQ 5%–VaR
GARCH N 14.50? 23.75 17.75 29.50 36.36 54.55 18.18 36.36 0.00 12.50 0.00 0.00
GARCH skN 7.50? 27.25 9.75 29.50 9.09 9.09 9.09 9.09 0.00 0.00 0.00 0.00
GARCH S 5.75? 10.00 13.75 21.75 36.36 54.55 54.55 54.55 0.00 25.00 12.50 0.00
GARCH skS 3.00? 9.75 9.25 12.75 0.00 18.18 18.18 9.09 0.00 0.00 0.00 0.00
GJR N 1.00? 12.75 3.50 16.50 0.00 9.09 9.09 9.09 0.00 0.00 0.00 0.00
GJR skN 1.00? 11.75 3.50 15.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GJR S 0.75 0.00 1.75 3.50 0.00 9.09 9.09 36.36 37.50 25.00 0.00 12.50
GJR skS 0.50 0.25 0.25 2.50 0.00 9.09 0.00 9.09 0.00 0.00 0.00 0.00
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Table 3: QL and wCRPS pairwise performance results
The table presents the forecasting results of the QL test (at α = 1% and α = 5%) and wCRPS test for the
universes of 400 stocks, 11 stock indices and 8 currencies. We report the average Diebold–Mariano (DM) test
statistics (Diebold and Mariano, 1995) computed with robust HAC standard errors, for the time series in the
various universes. Negative values indicate outperformance of the Markov–switching specification compared
with single–regime models. In light (dark) gray, we report statistics which are significantly negative (positive)
at the 1% level. Models are estimated by MCMC.

Stocks Stock indices Currencies

QL 1% QL 5% wCRPS QL 1% QL 5% wCRPS QL 1% QL 5% wCRPS

GARCH N 1.01 -3.51 -9.49 -0.81 2.22 -5.11 0.27 1.16 -2.80
GARCH skN 0.49 -4.21 -9.75 -2.36 -1.70 -5.45 0.29 -0.06 -4.11
GARCH S -2.94 -2.95 -2.70 -0.47 -0.24 -2.30 1.45 0.40 -2.85
GARCH skS 1.38 -3.22 -2.00 -0.31 0.27 -0.92 1.05 -1.06 -1.27
GJR N 0.64 -4.99 -9.86 0.52 0.76 -2.37 1.07 1.18 -2.25
GJR skN 1.10 -5.25 -10.08 -1.78 0.23 -2.95 1.52 0.33 -2.31
GJR S 0.71 -3.70 -2.91 -1.41 -0.58 -0.73 0.35 -0.40 -0.95
GJR skS 0.01 -1.81 -1.63 0.01 -0.42 -2.11 -0.44 -1.51 -1.56
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Table 4: wCRPS pairwise performance results for all specifications
The table presents the forecasting results of the wCRPS tests for the universes of 400 stocks (Panel A),
11 stock indices (Panel B) and 8 currencies (Panel C). We report the average Diebold–Mariano (DM) test
statistics (Diebold and Mariano, 1995) computed with robust HAC standard errors, for the time series in the
various universes. Negative values indicate outperformance of the Markov–switching specification compared
with single–regime models. In light (dark) gray, we report statistics which are significantly negative (positive)
at the 1% level. Models are estimated by MCMC.

GARCH GJR

MS/SR N skN S skS N skN S skS

Panel A: Stocks
GARCH N -9.49 -9.67 4.77 4.83 -7.48 -7.43 2.55 2.44
GARCH skN -9.55 -9.75 4.39 4.60 -7.58 -7.56 2.36 2.27
GARCH S -9.80 -10.01 -2.70 -1.69 -8.34 -8.37 -1.17 -1.40
GARCH skS -9.54 -9.76 -2.86 -2.00 -8.18 -8.22 -1.19 -1.44
GJR N -8.93 -9.02 2.86 2.99 -9.86 -10.04 4.92 4.69
GJR skN -9.03 -9.19 2.57 2.73 -9.86 -10.08 4.40 4.31
GJR S -9.50 -9.66 -0.86 -0.61 -10.24 -10.44 -2.91 -3.45
GJR skS -9.28 -9.47 -0.25 -0.02 -10.04 -10.28 -1.07 -1.63

Panel B: Stock indices
GARCH N -5.11 -2.82 1.22 4.63 -1.16 1.27 2.29 3.39
GARCH skN -6.27 -5.45 -2.56 0.81 -2.92 -0.94 -0.07 1.07
GARCH S -7.11 -5.21 -2.30 2.24 -2.51 -0.27 0.64 1.77
GARCH skS -7.05 -6.72 -4.08 -0.92 -3.47 -1.69 -0.86 0.17
GJR N -3.32 -1.91 0.31 2.25 -2.37 1.68 3.64 4.71
GJR skN -5.47 -4.59 -2.31 -0.42 -5.36 -2.95 -1.48 0.31
GJR S -5.33 -4.07 -1.88 0.11 -5.48 -2.08 -0.73 1.16
GJR skS -6.66 -6.00 -3.71 -1.88 -6.75 -4.97 -3.71 -2.11

Panel C: Currencies
GARCH N -2.80 -4.84 4.81 4.34 -3.22 -3.75 3.40 1.81
GARCH skN -1.48 -4.11 5.44 6.89 -2.12 -2.88 3.95 3.21
GARCH S -6.64 -7.46 -2.85 -2.29 -7.13 -6.95 -2.94 -4.03
GARCH skS -5.34 -7.34 -1.14 -1.27 -5.78 -6.55 -1.56 -3.20
GJR N -1.15 -2.85 5.11 4.40 -2.25 -2.61 4.90 3.02
GJR skN -0.58 -2.77 5.61 6.38 -1.60 -2.31 5.39 4.43
GJR S -4.61 -5.89 -0.19 -0.08 -5.93 -5.88 -0.95 -2.06
GJR skS -4.08 -5.91 0.35 0.48 -5.10 -5.70 -0.28 -1.56
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PRELIMINARY

Abstract

Markov–switching GARCH models have become popular to model the structural break
in the conditional variance dynamics of financial time series. In this paper, we describe
the R package MSGARCH which implements Markov–switching GARCH–type models
very efficiently by using C++ object–oriented programming techniques. It allows the
user to perform simulations as well as Maximum Likelihood and Bayesian estimation of
a very large class of Markov–switching GARCH–type models. Risk management tools
such as Value–at–Risk and Expected–Shortfall calculations are available. An empirical
illustration of the usefulness of the R package MSGARCH is presented.

Keywords: GARCH, MSGARCH, Markov–switching, conditional volatility, risk management,
R sofware.

1. Introduction

Modeling the volatility of financial markets is central in risk management. A seminal con-
tribution in this field was the development of the GARCH model by Bollerslev (1986) where
the volatility is a function of past asset returns. The GARCH model is today a widespread
tool in risk management. However, recent studies show that estimates of GARCH models can
be biased by structural breaks in the volatility dynamics (Bauwens et al. 2010, 2014). These
structural breaks typically occur during periods of financial turmoil. Estimating a GARCH
model on data displaying a structural break yields a non–stationary estimated model and im-
plies poor risk predictions. A way to cope with this problem is provided by Markov–switching
GARCH models (MSGARCH) whose parameters vary over time according to a latent discrete
Markov process. These models can quickly adapt to variations in the unconditional volatility
level, which improves risk predictions (Ardia 2008).

Following the seminal work of Hamilton and Susmel (1994), different parametrizations have
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been proposed to account for discrete changes in the GARCH parameters, for instance by
Dueker (1997), Gray (1996) and Klaassen (2002). However, these parametrizations for the
conditional variance process lead to computational difficulties. Indeed, the evaluation of the
likelihood function for a sample of length T in the case of K states requires the integration
over all KT possible paths, rendering the estimation infeasible.

In order to avoid any difficulties related to the past infinite history of the state variable, we
adopt the parametrization due to Haas et al. (2004b). In their model, the authors hypothesize
K separate GARCH(1,1) processes for the conditional variance of the MSGARCH process. In
addition to its appealing computational aspects, the MSGARCH model of Haas et al. (2004b)
has conceptual advantages. In effect, one reason for specifying Markov–switching models that
allow for different GARCH behavior in each regime is to capture the difference in the variance
dynamics in low– and high–volatility periods.

The R package MSGARCH aims to provide a comprehensive set of methods for the esti-
mation, the simulation and the forecasting of MSGARCH models. Also, methods for risk
management such as Value–at–Risk and Expected–Shortfall calculations are available. The
R package MSGARCH uses object–oriented programming techniques to efficiently implement
the estimation of such models, which is a computationally challenging task. This is crucial in
risk management for instance, in the case of large–scale backtesting. To our knowledge, there
is currently no such R package to implement MSGARCH models. The R package MSGARCH
is available from the CRAN repository at https://cran.r-project.org/package=MSGARCH

and the development version is available at https://github.com/keblu/MSGARCH.

In this vignette, we describe the models and the functions/methods available in the package.

2. Model specification

This section illustrates how to create MSGARCH specifications using the function create.spec.

As a first example, let us consider a GARCH conditional volatility model with two different
regimes in which the conditional distribution of the log–returns is assumed to be Normal.
This model can be created with the R package MSGARCH as follows:

R> spec = MSGARCH::create.spec(model = c("sGARCH", "sGARCH"),

+ distribution = c("norm", "norm"),

+ do.skew = c(FALSE, FALSE), do.mix = FALSE, do.shape.ind = FALSE)

The arguments are described below:

• model: conditional volatility model in each regime (vector). Valid models are "sGARCH",
"eGARCH", "gjrGARCH", "tGARCH", and "GAS" (see Section 2.1 for details).

• distribution: conditional distribution in each regime (vector). Available distributions
are "norm", "std", and "ged" (see Section 2.2 for details).

• do.skew: boolean indicating whether skewness should be allowed in the distributions.

• do.mix: boolean indicating whether a Mixture of GARCH processes should be used
instead of a MSGARCH process.

https://cran.r-project.org/package=MSGARCH
https://github.com/keblu/MSGARCH
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• do.shape.ind: boolean indicating whether the distributions’ parameters should be con-
strained to be the same across the different regimes.

We refer the reader to the documentation for more details; see help("create.spec").

Example 1: A single–regime model

The R package MSGARCH also supports single–regime models as they are the building blocks
for regime–switching models. The simplest specification we can build is a GARCH model with
a symmetric Normal conditional distribution:

R> spec = MSGARCH::create.spec(model = "sGARCH", distribution = "norm",

+ do.skew = FALSE)

Example 2: A model with heterogeneous regimes

The user can technically create any MSGARCH specification by selecting the desired single–
regime scedastic models and conditional distributions.1 Here is an example of a three–state
MSGARCH process where each regime is characterized by a different conditional volatility
model and a different conditional distribution:

R> spec = MSGARCH::create.spec(model = c("sGARCH", "tGARCH", "eGARCH"),

+ distribution = c("norm", "std", "ged"),

+ do.skew = c(TRUE, FALSE, TRUE), do.mix = FALSE, do.shape.ind = FALSE)

Summary of the specification object

The output of the function create.spec is a list of class MSGARCH_SPEC containing various
functions and variables. The relevant information is summarized with print or summary:

R> spec = MSGARCH::create.spec()

R> summary(spec)

[1] "Specification Type: Markov-Switching "

[1] "Specification Name: sGARCH_normal_sym sGARCH_normal_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in each distribution: 0 0"

[1] "Default parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2 beta_2 P P

[1,] 0.1 0.1 0.8 0.1 0.1 0.8 0.5 0.5

The specification provides information regarding the model such as the type (Markov–switching
or mixture), the GARCH–type specification within each regime, the number of variance pa-
rameters in each regime as well as the number of shape parameters in each regime. The last
line in the specification outputs the parameters in each regime as well as the transition prob-
abilities. We refer the reader to the documentation for details; see help("create.spec").

1
As discussed in Section 3, complex models are however more difficult to estimate.
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2.1. Conditional volatility models

The building blocks of the regime–switching models are the single–regime specifications. In
this section we review the conditional volatility models available in the R package MSGARCH.
A summary can be found in Table 1.

The log–return at time t is assumed to be of the form

yt = ηth
1/2
t , (1)

where h
1/2
t is the conditional volatility at time t, and {ηt}t≥0

i.i.d.∼ D(0, 1, λ). Here, D(0, 1, λ)
denotes a distribution with zero mean, unit variance, and shape parameters λ.

All single–regime conditional volatility models presented below are one–lag processes. This
approach proved to be an effective specification to capture the volatility clustering observed
in financial data. Moreover, it reduces the model’s complexity.

GARCH model

The GARCH model of Bollerslev (1986) is given by:

ht ≡ α0 + α1y
2
t−1 + βht−1 . (2)

To ensure positivity, we require α0 > 0, α1 ≥ 0, β ≥ 0. Covariance–stationarity is obtained
by adding the condition α1 + β < 1. To create a single–regime GARCH specification we use
model = "sGARCH" in the function create.spec.

EGARCH model

The Exponential GARCH (EGARCH) of Nelson (1991) is given by:

ln(ht) ≡ α0 + α1

(
|yt−1| − E[|yt−1|]

)
+ α2yt−1 + β ln(ht−1) . (3)

This model takes into consideration the leverage effect where past negative returns have a
larger influence on the conditional volatility than past positive returns of the same magnitude
(Black 1976; Christie 1982). The persistence of the models is captured by the coefficient β.
We set β < 1 to ensure stationarity. The creation of a single–regime EGARCH specification
is done by using model = "eGARCH" in the function create.spec.

GJR model

The GJR model of Glosten et al. (1993) is also able to capture the asymmetry in the condi-
tional volatility process. This model is given by:

ht ≡ α0 + α1y
2
t−1 + α2y

2
t−1I{yt−1<0} + βht−1 , (4)

where I{·} is the indicator function. The parameter α2 controls the degree of asymmetry in
the conditional volatility response to the past shock. To ensure positivity, we set α0 > 0,
α1 ≥ 0, α2 ≥ 0, β ≥ 0 (sufficient condition). To ensure covariance–stationarity we need the
condition α1 +α2E[η2I{η<0}]+β < 1. The single–regime GJR specification is created by using
model = "gjrGARCH" in the function create.spec.
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TGARCH model

Zakoian (1994) introduces the TGARCH which has the conditional volatility as dependent
variable instead of the conditional variance:

h
1/2
t ≡ α0 + α1yt−1I{yt−1≥0} + α2yt−1I{yt−1<0} + βh

1/2
t−1 . (5)

For positivity we set α0 > 0, α1 ≥ 0, α2 ≥ 0 and β ≥ 0. To ensure covariance–stationarity,
we require the condition α2

1 + β2 − 2β(α1 + α2)E[ηI{η<0}] − (α2
1 − α

2
2)E[η2I{η<0}] < 1 (see

Francq and Zakoian 2011, Section 10.2). The single–regime TGARCH specification is created
by using model = "tGARCH" in function create.spec.

GAS model

Generalized Autoregressive Score models were proposed in their full generality in Creal et al.
(2013). They provide a general framework for modeling time variation in parametric models.
The GAS model can be written as:

ht ≡ α0 + α1st−1 + βht−1 , (6)

where:

st−1 ≡ St−1∇t−1, ∇t−1 ≡
∂ ln f(yt−1|ht−1, λ)

∂ht−1
St−1 ≡ E[∇t−1∇

′
t−1]−1. (7)

Here, f(yt−1|ht−1, λ) is the likelihood (PDF) of observation yt−1 given the volatility ht−1

and the distribution’s shape parameters λ, and st−1 is the score of the observation. The
single–regime GAS model is created by using model = "GAS" in the function create.spec.

2.2. Conditional distributions

We present here the conditional distributions available in the R package MSGARCH. There
are two functions directly related to the conditional distribution:

• pdf: computes the probability density function (PDF).

• cdf: computes the cumulative density function (CDF).

We refer the reader to the documentation manual for further details; see help("create.spec").

Each distribution presented below is standardized to have zero mean and unit variance, and
is symmetric about the origin.

The Normal distribution

The PDF of the standard Normal distribution is:

fN (z) ≡ 1√
2π

e−
1
2
z
2

, z ∈ R. (8)

This distribution is selected with the argument distribution = "norm" in create.spec.
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The Student–t distribution

The PDF of the standardized Student–t distribution is given by:

fS(z; ν) ≡
√

ν

ν − 2

Γ
(
ν+1

2

)
√
νπ Γ

(
ν
2

) (1 +
z2

ν

)− ν+1
2

, z ∈ R, (9)

where Γ(·) is the Gamma function. We impose a shape parameter ν > 2 to ensure that the
second order moment exists. The kurtosis of this distribution is higher for lower ν.2 This dis-
tribution is selected with the argument distribution = "std" in the function create.spec.

The GED distribution

The PDF of the standardized generalized error distribution (GED) is given by

fGED(z; ν) ≡ νe−
1
2
|z/λ|ν

λ2(1+1/ν)Γ(1/ν)
, λ ≡

(
Γ(1/ν)

41/νΓ(3/ν)

)1/2

, z ∈ R, (10)

where ν > 0 is the shape parameter.3 This distribution is selected with the argument
distribution = "ged" in the function create.spec.

Skewed distributions

Fernández and Steel (1998) provide a simple way to introduce skewness into any unimodal
standardized distribution. Trottier and Ardia (2016) derive the moments of the standard-
ized Fernandez–Steel skewed distributions which are needed in the estimation of the GJR,
EGARCH, and TGARCH models. We refer the reader to Trottier and Ardia (2016) for de-
tails. In this approach, the parameter ξ (0 < ξ <∞) measures the degree of asymmetry. To
create any specification with skewed distribution we use the argument do.skew = TRUE in
the function create.spec.

2.3. Multiple–regime specifications

We present in this section the two multiple–regime specifications available in the R package
MSGARCH.

Markov–switching GARCH

Let {∆t}t≥0 be a time–homogeneous Markov chain with a finite state space S ≡ {1, ...,K}
and an irreducible and primitive K ×K transition matrix P:

P ≡

 p1,1 . . . pK,1
...

. . .
...

p1,K . . . pK,K

 , (11)

2
For ν = ∞, the Student–t distribution is equivalent to the Normal distribution.

3
Special cases of this distribution are obtained for ν = 1 (Laplace distribution) and ν = 2 (Normal distri-

bution). The uniform distribution is obtained in the limit ν → ∞.
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Conditional volatility models

GARCH model (model = "sGARCH")

ht ≡ α0 + α1y
2
t−1 + βht−1

EGARCH model (model = "eGARCH")

ln(ht) ≡ α0 + α1

(
|yt−1| − E[|yt−1|]

)
+ α2yt−1 + β ln(ht−1)

GJR model (model = "gjrGARCH")

ht ≡ α0 + α1y
2
t−1 + α2y

2
t−1I{yt−1<0} + βht−1

TGARCH model (model = "tGARCH")

h
1/2
t ≡ α0 + α1yt−1I{yt−1≥0} + α2yt−1I{yt−1<0} + βh

1/2
t−1

GAS model (model = "GAS")

ht ≡ α0 + α1st−1 + βht−1,

st−1 ≡ St−1∇t−1, ∇t−1 ≡
∂ ln f(yt−1|ht−1,λ)

∂ht−1
, St−1 ≡ E[∇t−1∇

′
t−1]−1

Conditional distributions

Normal distribution (distribution = "norm")

fN (z) ≡ 1√
2π
e−

1
2
z
2

, z ∈ R

Student–t distribution (distribution = "std")

fS(z; ν) ≡
√

ν
ν−2

Γ( ν+1
2 )

√
νπ Γ( ν2 )

(
1 + z

2

ν

)− ν+1
2
, z ∈ R

GED distribution (distribution = "ged")

fGED(z; ν) ≡ νe
− 1

2 |z/λ|
ν

λ2
(1+1/ν)

Γ(1/ν)
, λ ≡

(
Γ(1/ν)

4
1/ν

Γ(3/ν)

)1/2

, z ∈ R

Table 1: Available single–regime specifications.The conditional volatility models are presented
in the top panel and the PDF of the innovations’ distributions are presented in the bottom
panel. Each distribution is symmetric about the origin. Skewed versions of the distributions
are obtained with the argument do.skew = TRUE in the function create.spec.
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where 0 ≤ pi,j ≤ 1 is the probability of a transition from state ∆t−1 = i to state ∆t = j. By

normalization it follows that
∑K

j=1 pi,j = 1, ∀i ∈ {1, . . . ,K}.
Let the log–return at time t be of the form:

yt = η∆t,t
h

1/2
∆t,t

, (12)

where hk,t is the conditional variance at time t under regime k ∈ {1, . . . ,K}, {ηk,t}t≥0
i.i.d.∼

Dk(0, 1, λk), ∀k ∈ {1, . . . ,K}, and all innovations are independent. Here, Dk(0, 1, λk) denotes
the conditional distribution in regime k.

For the single–regime specification characterizing regime k, we let θk be the parameters of
the conditional variance process, and we let λk be the shape parameters of the conditional
distribution Dk. The realized time–series of the conditional variance process in regime k is
denoted by hk ≡ (hk,1, . . . , hk,T )′. The MSGARCH specification is constructed following the
approach by Haas et al. (2004b), which consists of many distinct single–regime specifications
evolving in parallel. We refer to Ardia (2008, Chapter 6) for more details.

Example: Estimation of a Markov–switching model

As an example, let us use the R package MSGARCH to create a two–state MSGARCH model
for the log–returns of the S&P 500. We first create a two–state MSGARCH model, K = 2,
from two single–regime GARCH processes each following a Normal distribution. We then fit
the model to the sp500 dataset which consists of the S&P 500 index closing value log–returns
ranging from 1998–01–01 to 2015–12–31.

R> data("sp500")

R> spec = MSGARCH::create.spec(model = c("sGARCH", "sGARCH"),

+ distribution = c("norm", "norm"),

+ do.skew = c(FALSE, FALSE), do.mix = FALSE, do.shape.ind = FALSE)

R> out.mle = MSGARCH::fit.mle(spec = spec, y = sp500)

R> summary(out.mle)

[1] "Specification Type: Markov-Switching"

[1] "Specification Name: sGARCH_normal_sym sGARCH_normal_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in each distribution: 0 0"

[1] "Default parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2 beta_2 P P

[1,] 0.1 0.1 0.8 0.1 0.1 0.8 0.5 0.5

[1] "DEoptim initialization: FALSE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2 beta_2 P P

[1,] 0.0016 0.02709 0.891 0.03792 0.1178 0.8777 1.976e-07 0.3686

[1] "Transition matrix:"

t = 1 t = 2

t + 1 = 1 1.976e-07 0.3686

t + 1 = 2 1.000e+00 0.6314

[1] "Stable probabilities:"
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Stable probabilities

State 1 0.2693

State 2 0.7307

[1] "Unconditional volatility:"

State 1 State 2

[1,] 0.1398 2.901

Log-kernel: -6507

AIC: 13236

BIC: 13287

The model is estimated by Maximum likelihood with the function fit.mle (see Section 3).
The resulting parameters are collected in the vector theta where each parameter is labeled
according to the model and its state. The function transmat is a helper function that builds
the transition matrix from the fitted parameters for better readability.

The output summary returns various information regarding the fit. In the case of the ML
estimation, the fitted parameters are returned. The summary also returns the stable (un-
conditional probabilities) and the unconditional volatility of each regime.It also reports the
log–kernel and the Akaike and Bayesian information criteria computed at the ML optimum.

Mixture of GARCH

Haas et al. (2004a) propose a general class of Mixture of GARCH models. They specify
a Mixture of Normal distributions where the variance process of each Normal component
is a GARCH process. They name this new class the MNGARCH models. A special case
of this specification, named the Full and Diagonal MNGARCH, is encountered when the
covariances between all components are constrained to be zero. This special case has a direct
relationship with the MSGARCH model. Indeed, we can constrain the transition matrix P of
the MSGARCH model so that the probability pi,j of a transition from state ∆t−1 = i to state
∆t = j is the same for all i ∈ {1, . . . ,K}, i.e., pi,j = pk,j , ∀i, k ∈ {1, . . . ,K}. The transition
matrix can the be described by a vector [p1, . . . , pK ]. This constraint effectively converts the
regime–switching model to a Mixture model.

For demonstration, let us repeat the experiment done in the previous section now with the
argument do.mix = TRUE.

R> spec = MSGARCH::create.spec(model = c("sGARCH", "sGARCH"),

+ distribution = c("norm", "norm"),

+ do.skew = c(FALSE, FALSE), do.mix = TRUE, do.shape.ind = FALSE)

R> out.mle = MSGARCH::fit.mle(spec = spec, y = sp500)

R> summary(out.mle)

[1] "Specification Type: Mixture"

[1] "Specification Name: sGARCH_normal_sym sGARCH_normal_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in each distribution: 0 0"

[1] "Default parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2 beta_2 P

[1,] 0.1 0.1 0.8 0.1 0.1 0.8 0.5
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[1] "DEoptim initialization: FALSE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2 beta_2 P

[1,] 0.001127 0.01747 0.8976 0.02929 0.1064 0.8884 0.1954

[1] "Stable probabilities:"

Stable probabilities

State 1 0.1954

State 2 0.8046

[1] "Unconditional volatility:"

State 1 State 2

[1,] 0.1152 2.368

Log-kernel: -6518

AIC: 13201

BIC: 13246

We can observe that we have less parameters labelled as P (where P is the matrix containing
the transition probabilities) since a Mixture of GARCH will always have less parameters than
a Markov–switching GARCH process. For a Mixture of GARCH, the transmat function will
output a probability vector rather than a probability matrix.

Regime–independent shape parameters

Sometimes it is useful to have a regime–switching behavior only in the conditional variance
and keep the same conditional distribution across all regimes. In this situation, we will say
that the shape parameters are regime–independent, since all distributions Dk in D and shape
parameters λk in Λ are restricted to be the same (i.e., the regimes only differ in terms of the
conditional variance process). This can be done by setting do.shape.ind = TRUE.

We now illustrate this in a two–state regime–switching GARCH model for which the condi-
tional Student–t distribution is the same in both regimes.

R> spec = MSGARCH::create.spec(model = c("sGARCH", "sGARCH"),

+ distribution = c("std", "std"),

+ do.skew = c(FALSE, FALSE), do.mix = FALSE, do.shape.ind = TRUE)

R> out.mle = MSGARCH::fit.mle(spec = spec, y = sp500)

R> summary(out.mle)

[1] "Specification Type: Markov-Switching with Regime-Independent distribution"

[1] "Specification Name: sGARCH_student_sym sGARCH_student_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in distribution: 1"

[1] "Default parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2 beta_2 nu_1 P P

[1,] 0.1 0.1 0.8 0.1 0.1 0.8 10 0.5 0.5

[1] "DEoptim initialization: FALSE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 beta_1 alpha0_2 alpha1_2 beta_2 nu_1 P P

[1,] 1e-04 0.02049 0.8767 0.02231 0.09955 0.8953 15.47 1.11e-16 0.1671
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[1] "Transition matrix:"

t = 1 t = 2

t + 1 = 1 1.11e-16 0.1671

t + 1 = 2 1.00e+00 0.8329

[1] "Stable probabilities:"

Stable probabilities

State 1 0.1432

State 2 0.8568

[1] "Unconditional volatility:"

State 1 State 2

[1,] 0.03119 2.074

Log-kernel: -6506

AIC: 13120

BIC: 13178

As we can see, the output only contains one parameter nu_1 with no regime indication instead
of two parameters nu_1 and nu_2.

3. Estimation

In the R package MSGARCH, estimation of single–regime and Markov–switching GARCH
models can be either done by Maximum Likelihood (ML) or via Markov chain Monte Carlo
(MCMC) simulation. In both cases, the key is the function kernel, which returns the sum
of the (log–)likelihood and the prior. More precisely, we have kernel(Θ) = L(y|Θ,Λ,P) +
prior(Θ) + prior(Λ) + prior(P) where L is the (log–)likelihood of y given the parameter Θ, Λ,
and P. We follow Ardia (2008) and use non–informative truncated Normal priors. Moreover,
the prior ensures that the Θ makes the conditional variance processes positive and stationary,
that Λ respects the parameters bounds of all the conditional distributions, and that the sum
of columns of P are equal to one in the case of a Markov–switching models. If any of these
conditions is not respected, the prior returns -1e10. For details on the ML or Bayesian
estimation via MCMC techniques, we refer the reader to Ardia (2008).

Maximum likelihood estimation

Obtaining the ML estimator of Markov–switching specifications using a standard optimiza-
tion technique can be a difficult task in practice. We therefore rely on the following sequential
strategy for the estimation. First, the optimization is performed using Nelder–Mead algorithm
for derivative–free optimization with the function nmkb from the dfoptim package (Varadhan
and Borchers 2016). If convergence is not achieved, the optimization is restarted using the (al-
most) original Nelder–Mead simplex algorithm with the function neldermead from the nloptr
package (Johnson 2014). Finally, if the convergence has still failed, we rely on Differential
Evolution (Price et al. 2006) as implemented in the DEoptim package (Ardia et al. 2015).

The list of control parameters ctr can also ensure that DEoptim is used as a first step to
define good starting value for the optimization. The control parameter do.enhance.theta0

performs volatility estimation over a rolling window and sets some parameters of the con-
ditional variance in each state such that they match empirical quantiles of the volatility
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distribution. This ad–hoc procedure has proved to be a good way to set the starting values.
We refer the reader to the documentation for details; see help("fit.mle").

R> data("sp500")

R> spec = MSGARCH::create.spec(model = c("sGARCH", "sGARCH"),

+ distribution = c("std", "std"),

+ do.skew = c(FALSE, FALSE), do.mix = FALSE, do.shape.ind = FALSE)

R> out.mle = MSGARCH::fit.mle(spec = spec, y = sp500)

R> summary(out.mle)

[1] "Specification Type: Markov-Switching"

[1] "Specification Name: sGARCH_student_sym sGARCH_student_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in each distribution: 1 1"

[1] "Default parameters:"

alpha0_1 alpha1_1 beta_1 nu_1 alpha0_2 alpha1_2 beta_2 nu_2 P P

[1,] 0.1 0.1 0.8 10 0.1 0.1 0.8 10 0.5 0.5

[1] "DEoptim initialization: FALSE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 beta_1 nu_1 alpha0_2 alpha1_2 beta_2 nu_2 P

[1,] 0.0003284 0.0719 0.928 2.374 0.02023 0.09678 0.898 20.45 0.02864

P

[1,] 0.237

[1] "Transition matrix:"

t = 1 t = 2

t + 1 = 1 0.02864 0.237

t + 1 = 2 0.97136 0.763

[1] "Stable probabilities:"

Stable probabilities

State 1 0.1961

State 2 0.8039

[1] "Unconditional volatility:"

State 1 State 2

[1,] 1.812 1.962

Log-kernel: -6506

AIC: 13063

BIC: 13128

The optimization was run with default parameters. They can be modified along the following
input parameters:

• do.init indicates if there is a pre–optimization with the R package DEoptim. Please
refer to the DEoptim documentation for more details; see help("DEoptim"). (Default:
do.init = FALSE)

• NP sets the number of vector of parameters in the population. (Default: NP = 200)
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• itermax sets the maximum number of iterations (number of populations generated).
(Default: maxit = 200)

• theta0 is the starting value for the chain (if empty the specification default value is
used).

• do.enhance.theta0 uses the volatilities of rolling windows of y and adjusts the default
parameters so that the unconditional volatility of each regime is set to different quantiles
of the volatilities obtained with rolling windows on y. (Default: do.enhance.theta0 =

TRUE)

Bayesian estimation

To perform Bayesian estimation we use the adaptive Metropolis–Hastings sampler described
in Vihola (2012) and available in the R package adaptMCMC (Andreas 2012). Various input
parameters can be used to design the MCMC experiment via the list of control parameters
ctr.

R> ctr.bay = list(N.burn = 5000, N.mcmc = 10000, N.thin = 10)

R> set.seed(123)

R> out.bay = MSGARCH::fit.bayes(spec = spec, y = sp500, ctr = ctr.bay)

R> summary(out.bay)

[1] "Specification Type: Markov-Switching"

[1] "Specification Name: sGARCH_student_sym sGARCH_student_sym"

[1] "Number of parameters in each variance model: 3 3"

[1] "Number of parameters in each distribution: 1 1"

[1] "Default parameters:"

alpha0_1 alpha1_1 beta_1 nu_1 alpha0_2 alpha1_2 beta_2 nu_2 P P

[1,] 0.1 0.1 0.8 10 0.1 0.1 0.8 10 0.5 0.5

[1] "Bayesian posterior mean:"

alpha0_1 alpha1_1 beta_1 nu_1 alpha0_2 alpha1_2 beta_2 nu_2

0.01146 0.08429 0.90644 9.86376 0.55834 0.38338 0.49062 10.11514

P P

0.97443 0.67645

[1] "Posterior variance-covariance matrix"

alpha0_1 alpha1_1 beta_1 nu_1 alpha0_2 alpha1_2

alpha0_1 1.306e-05 2.052e-05 -2.920e-05 -5.745e-05 7.725e-05 6.534e-05

alpha1_1 2.052e-05 1.097e-04 -1.100e-04 -5.996e-05 1.389e-04 1.365e-04

beta_1 -2.920e-05 -1.100e-04 1.233e-04 6.688e-05 -1.002e-04 -1.218e-04

nu_1 -5.745e-05 -5.996e-05 6.688e-05 1.716e-02 -3.352e-03 -6.777e-03

alpha0_2 7.725e-05 1.389e-04 -1.002e-04 -3.352e-03 2.247e-02 1.131e-02

alpha1_2 6.534e-05 1.365e-04 -1.218e-04 -6.777e-03 1.131e-02 7.335e-03

beta_2 -9.290e-05 -3.238e-04 2.584e-04 1.597e-02 -1.948e-02 -1.400e-02

nu_2 -2.290e-05 -1.215e-04 1.008e-04 -4.591e-03 -1.058e-02 -3.305e-03

beta_2 nu_2 P P

alpha0_1 -9.290e-05 -0.0000229 3.352e-05 6.665e-05
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alpha1_1 -3.238e-04 -0.0001215 5.504e-05 2.033e-04

beta_1 2.584e-04 0.0001008 -6.261e-05 -1.899e-04

nu_1 1.597e-02 -0.0045914 3.114e-04 -1.810e-02

alpha0_2 -1.948e-02 -0.0105786 7.371e-04 3.351e-03

alpha1_2 -1.400e-02 -0.0033052 2.850e-04 7.197e-03

beta_2 2.818e-02 0.0042056 -7.035e-05 -1.725e-02

nu_2 4.206e-03 0.0078102 -3.933e-04 4.995e-03

[ reached getOption("max.print") -- omitted 2 rows ]

[1] "Posterior mean transition matrix:"

t = 1 t = 2

t + 1 = 1 0.97443 0.6764

t + 1 = 2 0.02557 0.3236

[1] "Posterior mean stable probabilities:"

Stable probabilities

State 1 0.96357

State 2 0.03643

[1] "Posterior mean unconditional volatility:"

State 1 State 2

[1,] 1.112 2.105

Acceptance rate: 0.986

AIC: 13007

BIC: 13071

DIC: 13003

The function fit.bayes outputs summary results of the MCMC estimation, such as the
posterior mean and posterior covariance matrix, and various information criteria. We refer
the reader to the documentation for details; see help("fit.bayes"). The posterior sample
is also an element of the output and exported as an mcmc object (Plummer et al. 2006):

R> out.bay$theta

Markov Chain Monte Carlo (MCMC) output:

Start = 1

End = 1000

Thinning interval = 1

alpha0_1 alpha1_1 beta_1 nu_1 alpha0_2 alpha1_2 beta_2 nu_2 P

[1,] 0.011845 0.08601 0.9054 9.892 0.4773 0.3331 0.60078 10.137 0.9896

[2,] 0.010333 0.09109 0.9036 9.956 0.4416 0.2993 0.66062 10.128 0.9926

[3,] 0.011945 0.10301 0.8912 9.918 0.4850 0.3368 0.57464 10.110 0.9938

[4,] 0.013571 0.09164 0.8965 9.960 0.4287 0.2919 0.67781 10.124 0.9783

[5,] 0.007648 0.08841 0.9069 9.888 0.4704 0.3310 0.55750 10.128 0.9586

[6,] 0.012823 0.08313 0.9040 9.866 0.4695 0.3341 0.56646 10.133 0.9469

[7,] 0.010310 0.08402 0.9102 9.710 0.5924 0.4396 0.34054 10.137 0.9592

[8,] 0.010870 0.09859 0.8948 9.795 0.5547 0.4035 0.41248 10.114 0.9666

P

[1,] 0.6385

[2,] 0.5827
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[3,] 0.6398

[4,] 0.5735

[5,] 0.6618

[6,] 0.6664

[7,] 0.8388

[8,] 0.7690

[ reached getOption("max.print") -- omitted 992 rows ]

The function fit.bayes takes up to five controls arguments in ctr:

• N.burn: number of discarded draws. (Default: N.burn = 5000)

• N.mcmc: number of draws to keep. (Default: N.mcmc = 10000)

• N.thin: thinning factor. (Default: N.thin = 10)

• theta0: starting value for the chain (if empty the specification default value is used).

• do.enhance.theta0: boolean indicating whether to use a custom starting parameters
or not. (Default: do.enhance.theta0 = TRUE)

The main purpose of N.thin is to diminish the auto–correlation in the MCMC chain. The
argument N.burn also serves as pre–optimization step; this is why it is set to a large value
in the example. One alternative is to use a custom starting parameter theta0 in the ctr

argument or to set do.enhance.theta0 = TRUE. For example, we could set theta0 as the
ML estimator obtained with fit.mle. The total length of the chain is: N.mcmc / N.thin. The
chain is converted to a coda object meaning that all functions for MCMC analysis available
in the R package coda (Plummer et al. 2006) are available. We refer the reader to the
documentation for details; see help("fit.bayes").

4. Other functionalities

Many functionalities are available in the R package MSGARCH, which allow the user to
filter (functions ht and Pstate), to simulate (functions sim and simahead), to compute the
predictive density (function pred) and the probability integral transform (function pit), or to
compute risk measures such as the Value–at–Risk (VaR) or Expected–shortfall (ES) (function
risk). We refer the reader to the documentation manual for details; see help("MSGARCH").

In all cases, the object from the ML or Bayesian fit can be used as an input. In the case of the
MCMC estimation, the functions return the aggregated value over MCMC draws, hence the
true predictive distribution, and the VaR or ES which integrate the parameter uncertainty.

Finally, to perform in–sample model selection, information criteria such as the Aikaike (AIC)
criterion (Akaike 1974), the Bayesian Information criterion (BIC) (Schwarz et al. 1978), and
the Deviance Information criterion (DIC) (Gelman et al. 2014) are available. These are all
measures of the relative quality of statistical models for a given set of data, where lower values
are preferred.

5. Empirical illustration
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We illustrate the package’s usage on daily log–returns of the Swiss market index for a period
ranging from November 12, 1990, to October 20, 2000. The data set is also used in Mullen
et al. (2011) in the case of a MSGARCH model estimated by ML. In our empirical study, we
consider a single–regime GJR model with a skewed Student–t distribution and a two–state
Markov–switching GJR model with skewed Student–t distributions in each regime. Figure 1
displays the time series of log–returns.
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Figure 1: Log–returns of the Swiss Market Index. Data range from November 12, 1990, to
October 20, 2000.

The dataset is available in the R package DEoptim. The plot is generated with the following
code:

R> rm(list = ls())

R> require("MSGARCH")

R> require("coda")

R> require("DEoptim") # used for SMI data

R> data("SMI")

R> plot(y, xlab = "Date", ylab = "Log-return")

R> SMI = as.matrix(y)

R> date = as.Date(rownames(SMI))

R> date = c(date, date[length(date)] + 1)

We first estimate both models by ML with the pre–optimization argument do.init = TRUE:4

4
Note that the estimation with DEoptim initialization is computationally demanding.
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R> spec.1 = create.spec(model = "gjrGARCH",

+ distribution = "std", do.skew = TRUE,

+ do.mix = FALSE, do.shape.ind = FALSE)

R> out.mle.1 = MSGARCH::fit.mle(spec = spec.1, y = SMI,

+ ctr = list(do.init = TRUE))

R> summary(out.mle.1)

[1] "Specification Type: Single-Regime"

[1] "Specification Name: gjrGARCH_student_skew"

[1] "Number of parameters in variance model: 4"

[1] "Number of parameters in distribution: 2"

[1] "Default parameters:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1 xi_1

[1,] 0.1 0.05 0.1 0.8 10 1

[1] "DEoptim initialization: TRUE"

[1] "Fitted Parameters:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1 xi_1

[1,] 0.03934 0.04298 0.1143 0.8702 8.138 0.8555

[1] "Unconditional volatility:"

State 1

[1,] 1.285

Log-kernel: -3376

AIC: 6743

BIC: 6778

The results indicate a high level of volatility persistence in the conditional variance process
together with skewness and fat tails in the conditional distribution. A plot of the conditional
variance process can be generated using the following code:

R> ht = sqrt(250) * MSGARCH::ht(out.mle.1)

R> plot(ht, date = date) # annual vol

Results are displayed in Figure 2.
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Figure 2: Conditional volatility of the single-regime GJR model with skewed Student–t inno-
vations estimated by ML.

Let us now perform the ML estimation of the Markov–swiching model. This is achieved with
the following code:

R> spec.2 = MSGARCH::create.spec(model = c("gjrGARCH", "gjrGARCH"),

+ distribution = c("std", "std"),

+ do.skew = c(TRUE, TRUE), do.mix = FALSE, do.shape.ind = FALSE)

R> set.seed(123)

R> out.mle.2 = MSGARCH::fit.mle(spec = spec.2, y = SMI,

ctr = list(do.init = TRUE))

R> summary(out.mle.2)

[[1] "Specification Type: Markov-Switching"

[1] "Specification Name: gjrGARCH_student_skew gjrGARCH_student_skew"

[1] "Number of parameters in each variance model: 4 4"

[1] "Number of parameters in each distribution: 2 2"

[1] "Default parameters:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1 xi_1 alpha0_2 alpha1_2 alpha2_2

[1,] 0.1 0.05 0.1 0.8 10 1 0.1 0.05 0.1

beta_2 nu_2 xi_2 P P

[1,] 0.8 10 1 0.5 0.5

[1] "DEoptim initialization: TRUE"

[1] "Fitted Parameters:"
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alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1 xi_1 alpha0_2 alpha1_2 alpha2_2

[1,] 0.2227 0.001063 0.2131 0.5401 5.944 0.8521 0.08294 0.006224 0.1393

beta_2 nu_2 xi_2 P P

[1,] 0.8774 20 0.8582 0.9981 0.003125

[1] "Transition matrix:"

t = 1 t = 2

t + 1 = 1 0.998056 0.003125

t + 1 = 2 0.001944 0.996875

[1] "Stable probabilities:"

Stable probabilities

State 1 0.5464

State 2 0.4536

[1] "Unconditional volatility:"

State 1 State 2

[1,] 0.8102 1.423

Log-kernel: -3365

AIC: 6688

BIC: 6769

From the results, we first note that the first regime of the MSGARCH model exhibits less
persistence in the conditional variance. We also observe that parameter alpha2_1 is larger in
the first regime, implying a larger leverage effect in the less persistent state. The estimated
degrees of freedom suggests that the first regime is more fat–tailed than the second regime,
but the unconditional volatility of the first regime is much lower than that of the second
regime. Both conditional distributions are negatively skewed. The transtion matrix indicates
that the regime does not switch very often. This can be observed by computing the filtered
probabilities:

R> state = MSGARCH::Pstate(out.mle.2)

R> plot(state, date = date)

Result is displayed in Figure 3.
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Figure 3: Filtered probabilities of the first regime obtained by ML for the two–state Markov–
switching GJR model with skewed Student–t innovations.

Bayesian estimation of the MSGARCH model can also be easily performed. We use here the
ML estimator as the starting values:

R> ctr.bay.2 = list(N.burn = 5000, N.mcmc = 10000, N.thin = 10,

theta0 = out.mle.2$theta)

R> set.seed(123)

R> out.bay.2 = MSGARCH::fit.bayes(spec = spec.2, y = SMI, ctr = ctr.bay.2)

R> summary(out.bay.2)

[1] "Specification Type: Markov-Switching"

[1] "Specification Name: gjrGARCH_student_skew gjrGARCH_student_skew"

[1] "Number of parameters in each variance model: 4 4"

[1] "Number of parameters in each distribution: 2 2"

[1] "Default parameters:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1 xi_1 alpha0_2 alpha1_2 alpha2_2

[1,] 0.1 0.05 0.1 0.8 10 1 0.1 0.05 0.1

beta_2 nu_2 xi_2 P P

[1,] 0.8 10 1 0.5 0.5

[1] "Bayesian posterior mean:"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1 xi_1 alpha0_2 alpha1_2

0.224409 0.007664 0.233680 0.535233 5.950086 0.848320 0.084607 0.011201

alpha2_2 beta_2 nu_2 xi_2 P P
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0.155427 0.867021 19.991778 0.863425 0.996790 0.004452

[1] "Posterior variance-covariance matrix"

alpha0_1 alpha1_1 alpha2_1 beta_1 nu_1 xi_1

alpha0_1 8.727e-05 -3.024e-06 -9.409e-05 2.609e-05 -2.215e-04 1.133e-04

alpha1_1 -3.024e-06 3.411e-05 9.404e-05 -7.543e-06 3.972e-05 -2.976e-05

alpha2_1 -9.409e-05 9.404e-05 3.875e-04 -6.516e-05 3.615e-04 -2.119e-04

beta_1 2.609e-05 -7.543e-06 -6.516e-05 3.206e-05 -9.236e-05 3.639e-05

nu_1 -2.215e-04 3.972e-05 3.615e-04 -9.236e-05 6.307e-04 -3.300e-04

alpha0_2 alpha1_2 alpha2_2 beta_2 nu_2 xi_2

alpha0_1 -6.033e-05 3.034e-06 -1.131e-04 7.951e-05 -2.835e-06 5.743e-05

alpha1_1 3.455e-05 3.057e-06 7.774e-05 -4.958e-05 -6.947e-05 2.314e-05

alpha2_1 1.736e-04 3.919e-06 3.519e-04 -2.350e-04 -2.089e-04 1.060e-05

beta_1 -1.936e-06 -2.524e-05 -6.069e-05 4.029e-05 -2.112e-06 2.621e-05

nu_1 1.848e-04 8.092e-07 3.864e-04 -2.707e-04 -6.808e-05 -1.265e-04

P P

alpha0_1 -1.805e-06 4.064e-07

alpha1_1 1.026e-06 -4.006e-07

alpha2_1 -8.846e-06 4.874e-06

beta_1 6.101e-06 -1.704e-06

nu_1 -6.753e-06 1.168e-06

[ reached getOption("max.print") -- omitted 9 rows ]

[1] "Posterior mean transition matrix:"

t = 1 t = 2

t + 1 = 1 0.99679 0.004452

t + 1 = 2 0.00321 0.995548

[1] "Posterior mean stable probabilities:"

Stable probabilities

State 1 0.5435

State 2 0.4565

[1] "Posterior mean unconditional volatility:"

State 1 State 2

[1,] 0.8301 1.493

Acceptance rate: 0.992

AIC: 6689

BIC: 6771

DIC: 6672

We can test the mixing properties of the chains as follows:

R> require()

R> coda::traceplot(out.bay.2$theta[,1:6])

Results are displayed in Figure 4. We observe that the chain is mixing well, i.e., that the
MCMC algorithm converges to the stationary distribution.
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Figure 4: Trace of MCMC samples for the parameters of the first state in the two–state
Markov–switching GJR model with skewed Student–t innovations.

We can also display the pairs plot of MCMC draws with the following code:

R> pairs(x = as.matrix(out.bay.2$theta[,c(1,3,4,7,9,10)]), pch = 20, cex = 0.8)

Results are displayed in Figure 4. We can observe in Figure 5 that there is a high positive
correlation between alpha2_1 and alpha2_2, a high negative correlation between alpha2_1

and beta_2, and a high negative correlation between alpha2_2 and beta_2.
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Figure 5: Pairs plot of the MCMC draws for the two–state Markov–switching GJR model
with skewed Student–t innovations.

Figure 6 displays the filtered probabilities in the Bayesian case, reported as a fan plot.
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Figure 6: Filtered probabilities of the first regime obtained by MCMC for the two–state
Markov–switching GJR model with skewed Student–t innovations. Blue line indicates the
median.

Finally, we can compute and compare the ML and Bayesian VaR at the 95% risk level for the
two model specifications5:

R> risk.mle.1 = MSGARCH::risk(out.mle.1, level = c(0.95), ES = FALSE,

do.its = TRUE)

R> risk.mle.2 = MSGARCH::risk(out.mle.2, level = c(0.95), ES = FALSE,

do.its = TRUE)

R> risk.bay.1 = MSGARCH::risk(out.bay.1, level = c(0.95), ES = FALSE,

do.its = TRUE)

R> risk.bay.2 = MSGARCH::risk(out.bay.2, level = c(0.95), ES = FALSE,

do.its = TRUE)

The Value–at–Risk at 5% for both ML estimation of each model can be seen in Figure 7.
They look similar except that the MSGARCH model often shows bigger spikes than the
single–regime model when there is a large shift in volatility.

5
Note that the current implementation for the in–sample VaR estimation is sub–optimal (time consuming).

This will be improved in a next package release.
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Figure 7: In–sample ML and Bayesian Value–at–Risk at the 95% risk leval for the single–
regime and regime–switching models.

6. Conclusion

This vignette introduced the R package MSGARCH which allows us to estimate, simulate
and forecast Markov–switching GARCH models in the R statistical sofware. We detailed
how to create various single–regime and regime–switching specifications with various scedastic
functions and conditional distributions. We documented how to perfom Maximum Likelihood
and Bayesian estimation of these models. In an empirical illustration with real financial data,
we showed how to fit and compare the in–sample performance of two complicated single–
regime and Markov–switching GARCH specifications.

The R language has become an important vector for knowledge transfer in quantitative finance
over the last years. We hope the R package MSGARCH will provide risk managers and
regulators with new methodologies for improving risk forecasts of their portfolios.

Finally, if you use R or MSGARCH, please cite the software in publications.
Use citation(package = "MSGARCH").

Computational details

The results in this paper were obtained using R 3.2.3 (R Core Team 2016) with the pack-
ages: MSGARCH (Ardia et al. 2016), adaptMCMC (Andreas 2012), DEoptim (Ardia et al.
2015), dfoptim Varadhan and Borchers (2016), nloptr (Johnson 2014), Rcpp (Eddelbuettel
et al. 2016a; Eddelbuettel and François 2011), RcppArmadillo (Eddelbuettel et al. 2016b;
Eddelbuettel and Sanderson 2014) and xts (Ryan and Ulrich 2015). R itself and all packages
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used are available from CRAN at http://CRAN.R-project.org/. The package MSGARCH
is under development in GitHub at https://github.com/keblu/MSGARCH.
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Abstract

We study the effect of parameter and model uncertainty on the left-tail of predictive densities and

in particular on VaR forecasts. To this end, we evaluate the predictive performance of several

GARCH-type models estimated via Bayesian and maximum likelihood techniques. In addition to

individual models, several combination methods are considered such as Bayesian model averaging

and (censored) optimal pooling for linear, log or beta linear pools. Daily returns for a set of stock

market indexes are predicted over about 13 years from the early 2000s. We find that Bayesian

predictive densities improve the VaR backtest at the 1% risk level for single models and for linear

and log pools. We also find that the robust VaR backtest exhibited by linear and log pools is better

than the backtest of single models at the 5% risk level. Finally, the equally-weighted linear pool

of Bayesian predictives tends to be the best VaR forecaster in a set of 42 forecasting techniques.
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1. Introduction

Asset returns demonstrate volatility clustering and an abnormal amount of extreme values.

The autoregressive conditionally heteroscedastic (ARCH) model introduced in Engle (1982) is

able to seize these empirical regularities. A more flexible specification, the generalized ARCH

(GARCH) model, was later proposed in Bollerslev (1986). These models define the conditional

volatility as a deterministic function of past innovations. However, they do not consider the lever-

age effect, that is, the asymmetric relation between news and volatility (Black, 1976). As a conse-

quence, many asymmetric specifications for conditional volatility appeared around the 1990s (see

among others Nelson, 1991; Glosten et al., 1993; Zakoian, 1994). Furthermore, GARCH spec-

ifications were initially coupled with the normal conditional distribution. However, this appears

insufficient to fully account for asset return leptokurticity and skewness that can be empirically

observed. Other distributions with fatter tails were proposed such as the standardized Student-t

distribution (Bollerslev, 1987) or the generalized error distribution (Nelson, 1991) as well as meth-

ods to introduce skewness in these distributions (see e.g. Fernández and Steel, 1998). Recently,

GARCH-type models with complex updating mechanisms appeared such as those obtained from

the generalized autoregressive score modeling framework (Creal et al., 2013) with skewed and

leptokurtic conditional distributions.

A predictive density fully depicts the uncertainty related to a prediction. GARCH-type models

can typically be used to generate predictive densities for future returns of financial assets (e.g.

indexes or stocks). In financial risk management, precise estimation of the left-tail of asset re-

turns’ predictive densities is crucial to reliably depict downside risk (Tay and Wallis, 2000). There

are several kinds of predictive densities possessing different properties. Among them, Bayesian

predictive densities are of particular interest since they account for parameter uncertainty in a

small-sample framework (Geweke and Amisano, 2010). Such predictive densities can improve

out-of-sample left-tail predictive performance over those that do not integrate parameter uncer-

tainty (Hoogerheide et al., 2012a) and the Bayesian approach is an appropriate way to account for
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parameter uncertainty when the purpose is to produce Value-at-Risk (VaR) estimates (Aussenegg

and Miazhynskaia, 2006). However, it has never been shown in the literature that integrating pa-

rameter uncertainty can improve VaR forecasts; we aim at filling this gap. Figure 1 illustrates why

integrating parameter uncertainty can be useful for left-tail prediction. The Bayesian predictive

density (in blue) is a particular averaging of the predictives that can be formed with individual

posterior draws. It is generally more conservative than the predictive density with plugged maxi-

mum likelihood (ML) estimates (in red) and offers additional flexibility by accounting for all likely

scenarios within the model structure. Nevertheless, it is also interesting to go beyond this structure

by aggregating predictive densities originating from different models (see among others Genest

and Zidek, 1986; Hall and Mitchell, 2007; Gneiting and Ranjan, 2013; Moral-Benito, 2015, Sec.

5). This extra step allows us to account for model uncertainty and delivers further flexibility for

downside risk prediction.1

[Insert Figure 1 here.]

In this research, we assess the impact of these two forms of uncertainty on the left-tail of

predictive densities and in particular on VaR forecasts obtained from these densities. Our investi-

gations are performed in the universe of GARCH-type models. Besides being studied for decades

in financial econometrics, these models are extensively used in the financial industry. The effect

of parameter uncertainty is studied using Bayesian and ML estimation of GARCH-type models

(Ardia, 2008). The effect of model uncertainty is investigated using the linear and log pools as

well as the recent beta linear pool. Weights and parameters of the different pools are computed

from past data. Methods for weight computation include Bayesian model averaging with pre-

dictive likelihoods (Eklund and Karlsson, 2007), as well as optimal pooling or OP (Geweke and

1Some studies already rely on model combination for VaR forecasting (see Pesaran et al., 2009; Massacci, 2015;
Opschoor et al., 2015). However, they confine themselves to the linear pool and do not simultaneously account for
parameter and model uncertainty.

3



Amisano, 2011, 2012). Broadly speaking, the former method averages measures of past predictive

performance to form the weights while the latter looks for the weights that maximize past predic-

tive performance. We also use a censoring-based version of OP, referred to as COP, that allows us

to focus on the left-tail (Opschoor et al., 2015). We contribute to the literature by applying this

method to all of the previously mentioned pools, including the beta linear pool, and by comparing

it to other combination methods such as for instance Bayesian model averaging. We investigate

whether COP improves VaR forecasts for combinations of GARCH-type models.

Large forecasting experiments are carried out with several non-nested GARCH-type volatility

specifications using skewed and heavy-tailed conditional distributions. We predict daily returns of

a set of indexes over a window of about 13 years from the early 2000s. For each index, different

predictive densities are produced and aggregated. Then, we evaluate VaR estimates obtained from

individual and combined predictives. We also assess the quality of densities in the left-tail using

probability integral transforms. We find that Bayesian predictive densities improve VaR estimates

at the 1% risk level for individual models as well as for linear and log pools. We also find that the

VaR backtest is more robust when linear or log pools are used and that VaR estimates from these

methods are globally better than those of single models at the 5% risk level. Finally, the equally-

weighted linear pool of Bayesian predictives tends to be the best method for VaR prediction in a

set of 42 forecasting techniques.

The outline of this paper is the following. Section 2 presents GARCH-type models. Section

3 describes model estimation and the different types of predictive densities. Section 4 compares

single model predictions in a first application to stock market indexes. Section 5 discusses the

combination of predictive densities. Sections 6 compares single and combined forecasts in a sec-

ond application to stock market indexes. Section 7 concludes.
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2. GARCH-type models

Let yt be a return series with a negligible conditional mean such that we can write yt = σtεt

where the innovations εt are iid (independent and identically distributed) with zero mean and unit

variance. In the generalized autoregressive conditionally heteroscedastic (GARCH) model, the

conditional variance is given by:2

σ2
t ≡ α0 + α1y

2
t−1 + βσ2

t−1 , (1)

where α0 > 0, α1, β ≥ 0 to guarantee that (1) is positive and where α1 +β < 1 to ensure stationar-

ity. Although widely used in practice, the GARCH model does not account for the leverage effect

first evidenced by Black (1976). This effect is the fact that negative returns tend to increase more

volatility than positive ones. Around 1990, many specifications for conditional volatility appeared

to capture this effect. We consider here three of them that are popular and non-nested. The first is

the exponential GARCH (EGARCH) model (Nelson, 1991):

lnσ2
t ≡ α0 + α1(|εt−1| − E|εt−1|) + γεt−1 + β lnσ2

t−1 , (2)

where |β| < 1 is required for stationarity. The second is the GJR model (Glosten et al., 1993):

σ2
t ≡ α0 + α1y

2
t−1 + γy2

t−1I{yt−1 < 0}+ βσ2
t−1 , (3)

where α0 > 0, α1, β ≥ 0 and α1+γ ≥ 0 and where I{•} is an indicator function equal to one when

the condition in brackets holds and zero otherwise. Stationarity is ensured when α1 +γE[ε2t I{εt <

2We consider GARCH-type models in their (1, 1) form. In this model class, best performances are often obtained
from the most parsimonious specifications.
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0}] + β < 1. The third is the threshold GARCH (TGARCH) model (Zakoian, 1994):

σt ≡ α0 + α+
1 y

+
t−1 − α−1 y−t−1 + βσt−1 , (4)

where α0 > 0, α+
1 , α

−
1 , β ≥ 0 and where y+

t ≡ max{yt, 0} and y−t ≡ min{yt, 0}. The stationarity

condition for this model can be found in Francq and Zakoian (2010). In (2)–(3), the leverage

effect is captured by γ. In (4), it stems from the difference between α+
1 and α−1 . Note that these

three asymmetric volatility models exhibit different news impact curves. It is also noteworthy that

the GJR and TGARCH models are nested in the asymmetric power ARCH model of Ding et al.

(1993). However, we prefer the GJR and TGARCH models as they are more parsimonious and

provide a more stable estimation.

Recently, Creal et al. (2013) suggest the generalized autoregressive score (GAS) modeling

framework for latent variables which uses the derivative of the log predictive likelihood as an

updating mechanism. When applied to the conditional variance, it gives rise to a class of GARCH-

type models. The GAS model is given by:

σ2
t ≡ α0 + α1st−1 + βσ2

t−1 , st ≡ St∇t , ∇t ≡
∂

∂σ2
t

ln p(yt|σ2
t ) ,

where α0 > 0, α1, β ≥ 0 and where p(•) denotes a density function. The scaling factor St is

defined as the inverse of the information matrix. We require β < 1 for stationarity and we ensure

positive volatility. When the innovations are iid standard normal, this model is equivalent to (1).

However, more advanced distributions lead to complex updating mechanisms.

To properly account for the leptokurticity exhibited by the empirical distribution of asset re-

turns, we model innovations with the standardized Student-t distribution with ν > 2 degrees of
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freedom as proposed by Bollerslev (1987):

p(εt|ν) =
Γ
(
ν+1

2

)
Γ
(
ν
2

)√
π(ν − 2)

(
1 +

ε2t
ν − 2

)− ν+1
2

,

where Γ(•) is the gamma function. As a non-nested alternative, we also consider the generalized

error distribution (GED) with zero mean and unit variance (see Nelson, 1991):

p(εt|λ) =
λ exp

(
−1

2
|εt/ϕλ|λ

)
ϕλ2

λ+1
λ Γ

(
1
λ

) , ϕλ ≡

[
Γ
(

1
λ

)
2

2
λΓ
(

3
λ

)]
1
2

.

The parameter λ > 0 controls tail-thickness. The GED reduces to the standard normal distribution

when λ = 2, while the Laplace distribution appears when λ = 1. Empirical distribution of

asset returns is also typically skewed. We introduce skewness in the above distributions using the

approach by Fernández and Steel (1998). A standardized skew distribution is given by:

p∗(εt|ξ, ϑ) =
2σξ
ξ + 1

ξ

p

[
σξεt + µξ

ξ
I{εt ≥ −µξ/σξ}+ ξ(σξεt + µξ)I{εt < −µξ/σξ}|ϑ

]
,

where ξ > 0 is the skewness parameter, ϑ denotes the parameters of the initial distribution and:

µξ ≡ m1

(
ξ − 1

ξ

)
, σ2

ξ ≡ (1−m2
1)

(
ξ2 +

1

ξ2

)
+ 2m2

1 − 1 , m1 ≡ 2

∫ ∞
0

u p(u|ϑ)du .

The previous expressions can be used to obtain a skew version of any symmetric unimodal density

function which has zero mean and unit variance. We use formulas in Trottier and Ardia (2015) for

computing moments of skew distributions.

3. Model estimation and predictive densities

Both Bayesian and maximum likelihood (ML) estimation methodologies are considered.

To perform Bayesian estimation of a GARCH-type model Mk, we use an independence chain
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Metropolis-Hastings algorithm (Tierney, 1994) that simulates the posterior density p(θk|y,Mk) of

the parameter vector θk ∈ Θk given the sample of data y. The proposal distribution is constructed

with the MitISEM method proposed in Hoogerheide et al. (2012b). Furthermore, we use diffuse

proper priors as in Ardia (2008) and confirmed with sensitivity analyses that they have a negligible

influence on posterior results. To carry out ML estimation of Mk, we look for the vector of param-

eter estimates θ̂k ∈ Θk that maximizes the log likelihood function of the sample y using numerical

methods.

GARCH-type models can be used to generate predictive densities for future asset returns. Let

M ≡ {M1, . . . ,MK} be a set of such models. The Bayesian predictive density provided by Mk

for yt given the sample Y r
t−1 ≡ (yt−r, . . . , yt−1)′ of r past observations can be written as:3

p(yt|Y r
t−1,Mk) =

∫
Θk

p(yt|Y r
t−1, θk,Mk)p(θk|Y r

t−1,Mk)dθk , (5)

where p(yt|Y r
t−1, θk,Mk) is known analytically in GARCH-type models. The density in (5) can

easily be evaluated from a posterior sample. Furthermore, we see that it accounts for parameter

uncertainty. This feature has already proven useful for improving GARCH predictive performance

in terms of log score (Geweke and Amisano, 2010) and censored log score (Hoogerheide et al.,

2012a). Another predictive density that also accounts for parameter uncertainty could be built

for instance with the asymptotic sampling distribution of ML parameter estimates. However, as

explained in Geweke and Amisano (2010), it is difficult to interpret besides being a large sam-

ple approximation. Furthermore, Aussenegg and Miazhynskaia (2006) show that the Bayesian

approach is advantageous over other methods that account for parameter uncertainty when the

purpose is to produce Value-at-Risk estimates.

Of course, we can also produce predictive densities that condition on particular parameter

values instead of integrating parameter uncertainty. Posterior means θ̄k computed from Y r
t−1 can

3Here we consider one-step ahead predictions, but extension to larger forecast horizons is straightforward.
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be used to form the density p(yt|Y r
t−1, θ̄k,Mk) which we call the PM predictive density. It is also

common to consider the ML predictive density p(yt|Y r
t−1, θ̂k,Mk) where ML estimates θ̂k obtained

over Y r
t−1 are plugged into the density. In large samples, Bayesian, PM and ML predictives are

similar because the posterior density is very concentrated around the mode of the likelihood func-

tion. However, in practice, they exhibit important differences as highlighted in Sections 4 and 6

for the left-tail.

Finally, the predictive densities introduced above can be used to compute a fundamental risk

measure that is extensively used in the industry known as the Value-at-Risk or VaR (Duffie and

Pan, 1997; Jorion, 2007). It can merely be calculated as the 100δ% quantile of these predictive

densities. In general, the risk level δ ∈ (0, 1) is fixed to 0.01 or 0.05 to consider left-tail risk. The

above predictives can also be used to obtain the probability integral transform (PIT), that is, the

predicted probability to have an outcome smaller than or equal to the actual realization. For a given

sample, PITs from one-step ahead predictives will be iid uniform if the predictives correspond

to the data generating process (DGP) densities (Diebold et al., 1998). Therefore, studying PIT

independence and distribution allows us to evaluate one-step ahead predictive densities. In what

follows, we will assess the quality of our left-tail forecasts by considering only the PITs associated

to left-tail outcomes.

4. Application with stock market indexes I

We consider daily returns (in percentage points) of 8 major stock market indexes (CAC40,

DAX, DJIA, FTSE, Nikkei, NASDAQ, SMI and S&P500) provided by the Oxford-Man Institute.

These samples start from January 3, 2000 and are made of 3265 observations (about 13 years).

Note that the series are demeaned and that a first-order autoregressive filter is applied on each of

them to focus on volatility and higher conditional moments.

We work here with the EGARCH, GJR, TGARCH and GAS models with skew Student-t

and skew GED innovations. These non-nested GARCH-type models are used to produce one-
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day ahead Bayesian, PM and ML predictive densities for each index. Rolling windows of 750

past observations are used for posterior and ML estimations. Such windows allow us to take into

account potential parameter instability over time. Note that we set aside the 500 first predictives to

be consistent with the application of Section 6 where they are used to form combination weights.

For each series, we use predictives to compute 1% and 5% VaR estimates as well as PITs below

5%.

4.1. Backtest methodologies

To backtest our VaR estimates, we first consider the standard unconditional coverage (UC)

test (Kupiec, 1995) which is simply a likelihood ratio (LR) test for the correct proportion of VaR

exceedances, or hits, and the conditional coverage (CC) test of Christoffersen (1998) where the

alternative hypothesis is that the hits follow a first-order Markov chain. We do not perform the CC

test when the 1% risk level is involved as it is often invalid due to a lack of consecutive hits at this

risk level. To gain power, we complement these tests with the Monte Carlo test of unconditional

coverage (MCS) proposed in Ziggel et al. (2014). It is based on the statistic:

MCS ≡
T∑
t=1

It + ε ,

where It ≡ I{yt < VaRδ
t} and ε ∼ iidN(0, 0.0012). Critical values for this test are obtained

via Monte Carlo simulation. As our VaR estimates are generally not sufficiently conservative, we

perform upper-tailed MCS tests. We also consider the CAViaR test (Engle and Manganelli, 2004)

as implemented in Berkowitz et al. (2011). We estimate the following logit model:

Pr(It) ≡
exp(φ0 + φ1It−1 + φ2VaRδ

t )

1 + exp(φ0 + φ1It−1 + φ2VaRδ
t )
,

10



and perform a LR test of the joint hypothesis (φ0 = ln[δ/(1 − δ)], φ1 = 0, φ2 = 0). Finally, we

calculate the (tick) asymmetric linear losses induced by our VaR forecasts:

L(yt,VaRδ
t ) ≡ (δ − It)(yt − VaRδ

t ) ,

and test significance of differences between mean tick losses with the Diebold-Mariano (DM) test

(Diebold and Mariano, 1995) using a heteroscedasticity and autocorrelation consistent variance

estimate.

To analyze PITs below 5%, we begin by rescaling and normalizing them (see Christoffersen

and Pelletier, 2004). Then, we carry out the ARCH, JB and LR tests suggested in Deschamps

(2012). The ARCH test is a F -test of the nullity of autoregression coefficents (intercept excluded)

in a 6-order autoregressive process of the squared PITs. We use a heteroscedasticity consistent

covariance matrix estimate for this test. The JB test is the Jarque-Bera test for normality and the

LR test is simply a test of N(0, 1) against an unconstrained normal alternative.

4.2. Backtest results

Table 1 reports the numbers of rejections at the 5% significance level over the set of 8 indexes

for the backtest of 2015 VaR estimates at the 1% and 5% risk levels. These quantities are obtained

from Bayesian, PM and ML predictives generated by our GARCH-type models. We see that, at the

1% risk level, Bayesian predictives show globally fewer rejections than PM or ML predictives. At

the 5% risk level, evidence is less clear. Performances of Bayesian and PM predictives are similar.

Moreover, they both tend to provide better results in terms of unconditional coverage than ML

predictives while their CAViaR tests show more rejections than for ML predictives. Regarding

models’ performance, the skew GED tends to improve performance, especially at the 5% risk

level. Note the perfect backtest of the GJR and GAS models with skew GED innovations at the

5% risk level. Globally, the EGARCH model provides the worst outcomes.
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[Insert Table 1 here.]

Table 2 presents the numbers of rejections over the 8 indexes at the 5% significance level for

the tests used to analyze rescaled PITs below 5%. PITs are computed from 2015 Bayesian, PM

and ML predictives generated by our GARCH-type models. We observe few rejections for the

ARCH test whatever the predictive used. Regarding normality, the JB and LR tests favor Bayesian

predictives over PM or ML predictives. Note however that the JB test for the skew Student-t

TGARCH model is rejected 5 times over 8 with Bayesian predictives.

[Insert Table 2 here.]

In summary, the backtest in this application tends to favor 1% VaR estimates and left-tail

forecasts generated from Bayesian predictives. For single models, it is therefore better to forecast

the left-tail and compute 1% VaR estimates from predictives that integrate parameter uncertainty

than from predictives that do not, such as the PM or ML ones. Now it remains to investigate if

accounting for model uncertainty also improves our forecasts and under which circumstances. For

this purpose, we consider model combination.

5. Combination of predictive densities

Predictive densities generated from models inM can be aggregated together. The older and

probably the more intuitive formula used for this purpose is the linear pool (Stone, 1961):4

plin(yt|Y r
t−1, wt−1) ≡

K∑
k=1

wt−1,kp(yt|Y r
t−1,Mk) , (6)

4For notational simplicity, we present aggregation formulas with Bayesian predictive densities. However, they
also apply to other types of predictives.
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where wt ≡ (wt,1, . . . , wt,K)′ is a weight vector depending on data up to time t and satisfying the

conditions
∑K

k=1wt,k = 1 and wt,1, . . . , wt,K ≥ 0 in order for (6) to be a valid density. The linear

pool may be multimodal and tends to be overdispersed. Nevertheless, it performs well in many

applications. Gneiting and Ranjan (2013) argue that it is because individual densities are often

underdispersed relative to the true density. On the other hand, Krüger (2014) shows that important

scoring rules for the linear pool including the log scoring rule satisfy a lower bound. For those

scoring rules, the linear pool score cannot be lower than a weighted average of individual densities’

scores. He explains that the linear pool should thus outperform its components on average over

time because, unlike its components’ score, the linear pool score will exceed the lower bound at

each time period.

Alternative non-linear pools appeared in the literature. A popular one is the log pool:

plog(yt|Y r
t−1, wt−1) ≡

∏K
k=1 p(yt|Y

r
t−1,Mk)

wt−1,k∫∞
−∞
∏K

k=1 p(u|Y
r
t−1,Mk)

wt−1,kdu
,

where the weights meet the same constraints than those of the linear pool for convenience. Its log

kernel corresponds to a weighted average of log densities of individual models. The log pool is

generally unimodal and less dispersed than the linear pool (Genest and Zidek, 1986). Moreover, its

log score has a lower bound (Kascha and Ravazzolo, 2010; Krüger, 2014). In the area of inflation

forecasting, Krüger (2014) finds some empirical evidence in favor of the logarithmic pool against

the linear one, while discrimination is more difficult in Kascha and Ravazzolo (2010).

As discussed among others in Gneiting and Ranjan (2011), it is important for a predictive den-

sity to be well calibrated, that is, to be statistically consistent with the DGP. Inadequate calibration

can be diagnosed by the PIT distribution. The beta linear pool devised by Ranjan and Gneiting

(2010) and Gneiting and Ranjan (2013) comes along with an improved calibration. Its density is

obtained by applying a beta distribution function to the distribution function of the linear pool and
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by taking the derivative. We write it as follows:

pblin(yt|Y r
t−1, wt−1) ≡ βa,b

[
K∑
k=1

wt−1,k

∫ yt

−∞
p(u|Y r

t−1,Mk)du

]
K∑
k=1

wt−1,kp(yt|Y r
t−1,Mk) ,

where βa,b(•) is the beta density with shape parameters a, b > 0 and where the non-negative

weights add to one. The linear pool results when a = b = 1. Note that the beta linear pool is

a special case of the generalized linear pool introduced by Kapetanios et al. (2015) that lets the

weights depend on yt. Recent studies (Bassetti et al., 2015, Casarin et al., 2016) also consider a

mixture of beta calibration functions for pooling schemes, however this will not be used in this

research.

Besides the aggregation formula, the determination of the weights is also crucial. A basic

solution to this problem is to use equal weights. This approach is successful for combining point

forecasts (Clemen, 1989; Stock and Watson, 2004; Smith and Wallis, 2009). When the weights of a

linear pool of Bayesian predictive densities are defined as posterior model probabilities, we obtain

the Bayesian model averaging (BMA) method. This approach stems naturally from probability

rules and formally accounts for model uncertainty (Leamer, 1978, Ch. 4). Of course, we can

also heuristically account for model uncertainty by using posterior model probabilities with other

aggregation formulas and other kinds of predictive densities. In the BMA method, the posterior

model probability of a single model inM will be equal to one asymptotically even if this model

is false. This situation is illustrated in Ardia and Kolly (2016). As this is questionable, we prefer

to consider an implementation of BMA where marginal likelihoods are replaced by predictive

likelihoods (Eklund and Karlsson, 2007). In this framework, BMA weights can be written as:

wBMA
t−1,k ≡

p(Y s
t−1|Y r

t−s−1,Mk)∑K
l=1 p(Y

s
t−1|Y r

t−s−1,Ml)
,

where we assume equal prior model probabilities and where s corresponds to the size of the weight
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estimation window. This implementation of BMA implies slower convergence to a single model

and allows us to work with diffuse priors. Note that the BMA weights do not depend on the

aggregation formula and that BMA does not provide a way to estimate a and b in the beta linear

pool.

An alternative to BMA is the optimal pooling (OP) approach introduced in Hall and Mitchell

(2007) and subsequently deepened in Geweke and Amisano (2011, 2012). For a given pool

pc(yt|Y r
t−1, wt−1), the OP weights are given by:

wOP -c
t−1 ≡ arg max

wt−1

t−1∑
τ=t−s

ln pc(yτ |Y r
τ−1, wt−1) , (7)

where optimal weights must be found in the unit simplex. The objective function in (7) adds

pool log scores over the sample Y s
t−1 and its maximization corresponds to the minimization of the

Kullback-Leibler (KLIC) distance from the DGP to the pool (Hall and Mitchell, 2007). Further-

more, when the DGP is a model or a linear or log pool of models inM, the OP method asymptot-

ically recovers true weights (Krüger, 2014). However, we observed in our own experiments that

uncertainty around true weights can remain substantial even with large estimation windows. On

the other hand, when the DGP cannot be obtained from models inM, several OP limiting weights

are typically positive.

In risk management, pool predictive densities can be used to obtain VaR estimates (see e.g.

Ardia and Kolly, 2016). Therefore, it is possible to improve these estimates by using weights

that give more importance to left-tail outcomes. Opschoor et al. (2015) propose to replace the

log score in (7) by the censored scoring rule introduced in Diks et al. (2011).5 This scoring rule

is equal to the log predictive likelihood when the outcome falls below a threshold and to the log

probability mass above the threshold otherwise. It thus neglects the shape of the predictive above

5Note that another approach using censoring in a BMA framework to generate weights that give more importance
to tail events is proposed in Gatarek et al. (2014).

15



the threshold. The censored OP (COP) weights can be obtained as follows:

wCOP -c
t−1 ≡ arg max

wt−1

t−1∑
τ=t−s

I{yτ < q̂ψ} ln pc(yτ |Y r
τ−1, wt−1)

+ I{yτ ≥ q̂ψ} ln

∫ ∞
q̂ψ

pc(u|Y r
τ−1, wt−1)du , (8)

subject to the usual weight restrictions. We define the censoring bound q̂ψ as the empirical 100ψ%

quantile obtained from the sample Y s
t−1. The choice of ψ thus determines the percentage of uncen-

sored observations used to compute the weights.

Specific expressions are very useful for implementing the COP method. One is provided in

Opschoor et al. (2015) in the linear pool case while another is given in Ardia and Kolly (2016) in

the log pool case. For the beta linear pool, it can be shown that (8) reduces to:

wCOP -blin
t−1 ≡ arg max

wt−1,a,b

t−1∑
τ=t−s

I{yτ < q̂ψ} ln pblin(yτ |Y r
τ−1, wt−1)

+ I{yτ ≥ q̂ψ} ln

(
1−Ba,b

[
K∑
k=1

wt−1,k

∫ q̂ψ

−∞
p(u|Y r

τ−1,Mk)du

])
,

where Ba,b(•) is the beta distribution function. Let us now illustrate the relevance of using COP

for the beta linear pool when we are interested by the calibration of the left-tail. We simulate 1000

observations from the mixture DGP 0.6N(−2, 1) + 0.4N(2, 1) to form an estimation period and

1000 other observations from the same DGP to constitute a forecasting period. We consider the

misspecified models N(−1, 1) and N(1, 1) and combine them with linear and beta linear pools

whose weights and parameters are estimated with the OP and COP methods on the estimation

period. In the COP method, the censoring bound is fixed to −2 such that about 30% of the lowest

observations are uncensored. Then, we compute PITs below 30% on the forecasting period and

rescale them so that they lie between 0 and 1. Figure 2 presents the empirical distribution functions

of these tail PITs with straight lines passing through 0 and 1 representing the ideal behavior. We
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see that the tail PITs provided by the beta linear pool are closer to the straight line. This was

already highlighted in Bassetti et al. (2015) and Casarin et al. (2016). Furthermore, we observe

that the calibration is even better when COP is used to estimate the beta linear pool. We have this

because COP focuses on the left-tail.

[Insert Figure 2 here.]

6. Application with stock market indexes II

Due to the computational cost implied by model combination, and by analogy with Opschoor

et al. (2015), we consider here a subset of 4 indexes (DJIA, FTSE, Nikkei and S&P500) among

those described in Section 4. We work again with the EGARCH, GJR, TGARCH and GAS mod-

els with skew Student-t and skew GED innovations. We produce one-day ahead Bayesian and

ML predictive densities for each index using rolling estimation windows of 750 past observations.

Predictives are then aggregated using linear and log pools with equal, BMA, OP and COP weights

and the beta linear pool with OP and COP weights. Rolling windows of 500 past observations are

used for weight estimation.6 They allow us to account for potential variation in model prevalence

over time. In the COP method, we define censoring bounds such that 15% and 25% of the lowest

observations of these windows are uncensored. This way, we keep enough uncensored observa-

tions to form model weights based on their left-tail performance. For each index, 1% and 5% VaR

estimates as well as PITs below 5% are computed.

6.1. Backtest results

The methodologies used to backtest our forecasts are described in Subsection 4.1. Tables

3 and 4 present the backtest of 2015 VaR estimates at the 1% and 5% risk levels, respectively,

obtained from Bayesian and ML predictives of our models and model combinations. We only

6Parameters a and b in the beta linear pool are also estimated on these windows.
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report statistical significance results at 1%, 5% and 10% to ease analysis. Tables with test statistics

are available upon request from the authors. We start by studying results at the 1% risk level in

Table 3. We observe that Bayesian predictives globally provide better unconditional coverage

for single models and under linear and log pooling. A notable exception is the log pool with

COP weights and 25% censoring for the S&P500 index where ML predictives are preferable.

Regarding individual models, the skew Student TGARCH model delivers the best outcomes while

the performance of the EGARCH and GAS models is poor. Interestingly, the results among linear

or log pools are more similar than among single models given a particular index. Note the very

good VaR backtest of the equally-weighted (EW) linear pool. On the other hand, the beta linear

pool shows puzzling outcomes. It can give correct unconditional coverage, especially when COP

is used for estimation. However, its CAViaR test is systematically rejected, indicating that the

calibration provided by the beta linear pool is detrimental to the independence of VaR violations.

Moreover, Bayesian predictives seem to be harmful to the beta linear pool.

[Insert Table 3 here.]

We now turn to the 5% risk level in Table 4. In this case, discrimination among Bayesian and

ML predictives is more difficult. Bayesian predictives are favored for the S&P500 index while

they are not for the FTSE index. About single models, the EGARCH model and the skew Student

GAS models give bad results again. Note also the poor VaR backtest exhibited by the TGARCH

model for the FTSE index. Given a particular index, results among combination methods are anew

more similar. They are also globally better than those of single models. It is noteworthy that the

EW linear pool is the only method providing a perfect backtest for the FTSE index and that the

puzzling behavior of the beta linear pool can only be observed for the FTSE index.

[Insert Table 4 here.]
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Figures 3 and 4 present DM test statistics for significance of differences between mean (tick)

asymmetric linear losses computed for 2015 VaR estimates at the 1% and 5% risk levels. Figure

3 compares the skew GED GJR model and the EW linear pool with Bayesian predictives to all

other forecasting techniques, while Figure 4 compares these two methods with ML predictives

to all other techniques. In both Figures, we observe at the 1% risk level that – relative to our

two benchmarks – forecasting techniques using ML predictives are less accurate than those using

Bayesian predictives. This phenomenon is not observable at the 5% risk level. In overall, the skew

GED GJR model and the EW linear pool exhibit a close performance. However, a larger number

of significant differences favor the EW linear pool at the 5% risk level. Finally, note that the beta

linear pool performs very badly against both benchmarks at the 1% risk level while there are few

significant differences at the 5% risk level.

[Insert Figures 3 and 4 here.]

Table 5 presents the analysis of rescaled PITs below 5% derived from 2015 Bayesian and ML

predictives produced by our models and model combinations. Again, we only report statistical

significance results at 1%, 5% and 10% to facilitate analysis and can provide Tables with test

statistics upon request. Regarding the ARCH test, it shows few rejections. There is however

an issue with normality for the Nikkei index and also for the S&P500 index to a lesser extent.

We found that it is due to very large negative returns that occur for these indexes and that are not

captured by predictive densities. Note also that it is harder for ML predictives to achieve normality

for the S&P500 index and that tail PITs of the beta linear pool are often not normally distributed.

[Insert Table 5 here.]

We reported in Subsection 4.2 that Bayesian predictives integrating parameter uncertainty im-

prove 1% VaR forecasts for single models. We found here that 1% VaR forecasts from Bayesian
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predictives are also better under linear and log pooling. Besides this, we observed that linear and

log pools are preferred to single models at the 5% risk level. We also highlighted that they provide

a more homogeneous VaR backtest than single models. This suggests that these methods are ro-

bust against their worst performing components. Among all forecasting techniques, the better VaR

forecaster tend to be the EW linear pool of Bayesian predictives. This result can be explained by

the superiority of VaR forecasts derived from Bayesian predictives and by the success of the EW

combination in the literature. We also remarked in our own experiments that the optimal weight

estimates exhibit considerable uncertainty. Finally, focusing on the left-tail with COP does not

provide the expected results.

7. Conclusion

In this study, we use a set of GARCH-type models to assess the influence of parameter and

model uncertainty on the left-tail of predictive densities and especially on VaR estimates. Our

main findings can be summarized as follows. First, accounting for parameter uncertainty within

the Bayesian framework improves the VaR backtest at the 1% risk level for single models as well

as linear and log pools. It tends also to improve left-tail forecasts as indicated by tail PIT analyses.

Second, accounting for model uncertainty via linear of log pooling produces robust VaR backtests.

Moreover, these pooling methods present better VaR estimates than single models at the 5% risk

level. Third, the EW linear pool of Bayesian predictive densities tends to be the best VaR forecaster

among 42 forecasting techniques.

Regarding the relative performance of single models, the worst VaR estimates are undoubtedly

provided by the EGARCH model while the best ones tend to be produced by the GJR model

with a preference for skew GED innovations. We also demonstrate that GAS models with skew

Student and GED innovations are competitive GARCH-type models. Lastly, we propose a novel

combination scheme – the beta linear pool with COP weights – that simultaneously calibrates and

focuses on the left-tail. This method gives puzzling results in our applications. Its VaR forecasts
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can show correct unconditional coverage while generating dependent VaR violations. In further

research, it would be interesting to refine this method and to use it in other applications. Another

interesting extension would be to see how priors that amplify or moderate time-varying volatility

affect left-tail forecasts incorporating parameter and/or model uncertainty.
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Table 1: Numbers of rejections at the 5% significance level over 8 indexes (CAC40, DAX, DJIA, FTSE, Nikkei,
NASDAQ, SMI and S&P500) for the backtest of our GARCH-type models using 2015 VaR estimates obtained from
one-day ahead Bayesian, PM and ML predictives. The UC, MCS and CAViaR tests are presented in Subsection 4.1.
Definitions of model acronyms can be obtained in Table A.1.

Bayesian predictives PM predictives ML predictives

UC MCS CAViaR UC MCS CAViaR UC MCS CAViaR

1% risk level

egarch.st 3 3 2 3 4 3 3 3 2
egarch.sged 3 3 1 3 3 1 3 4 2
gjr.st 0 1 0 0 1 0 0 1 1
gjr.sged 0 0 0 0 1 0 1 1 1
tgarch.st 2 1 0 2 1 0 1 1 0
tgarch.sged 1 1 0 1 1 0 1 1 0
gas.st 1 2 1 2 4 1 2 4 1
gas.sged 0 0 0 0 1 1 2 4 1

5% risk level

egarch.st 1 2 2 1 3 2 2 2 1
egarch.sged 0 0 2 0 1 2 1 2 2
gjr.st 0 0 1 0 0 1 0 2 0
gjr.sged 0 0 0 0 0 0 0 0 0
tgarch.st 0 1 2 0 1 2 1 2 1
tgarch.sged 0 0 2 0 0 2 1 1 1
gas.st 1 3 0 1 2 0 1 2 0
gas.sged 0 0 0 0 0 0 0 0 0
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Table 2: Numbers of rejections at the 5% significance level over 8 indexes (CAC40, DAX, DJIA, FTSE, Nikkei,
NASDAQ, SMI and S&P500) for the analysis of rescaled PITs below 5%. These PITs are obtained from 2015 one-
day ahead Bayesian, PM and ML predictives produced by our GARCH-type models. The ARCH, JB and LR tests are
presented in Subsection 4.1. Definitions of model acronyms can be obtained in Table A.1.

Bayesian predictives PM predictives ML predictives

ARCH JB LR ARCH JB LR ARCH JB LR

egarch.st 1 1 2 0 1 4 2 1 2
egarch.sged 2 3 2 0 3 3 0 4 5
gjr.st 0 2 1 1 3 3 0 2 1
gjr.sged 0 4 2 1 4 3 0 4 3
tgarch.st 1 5 1 0 1 3 0 1 1
tgarch.sged 0 4 2 0 4 1 0 4 2
gas.st 0 2 1 1 3 3 1 2 1
gas.sged 0 2 3 0 3 5 1 3 4
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Table 3: Statistical significance results for the backtest of one-day ahead VaR forecasts at the 1% risk level obtained
from Bayesian and ML predictive densities produced by our GARCH-type models and from combinations of these
densities. VaR forecasts are generated for 2015 daily returns of the DJIA, FTSE, Nikkei and S&P500 indexes. The
symbols ∗, ∗∗ and ∗∗∗ indicate significance at 10%, 5% and 1%, respectively. The UC, MCS and CAViaR tests are
presented in Subsection 4.1. Definitions of model acronyms can be obtained in Table A.1.

Bayesian predictives ML predictives

UC MCS CAViaR UC MCS CAViaR

DJIA

egarch.st ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗
egarch.sged ∗∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
gjr.st ∗ ∗∗
gjr.sged ∗
tgarch.st
tgarch.sged ∗
gas.st ∗ ∗ ∗∗
gas.sged ∗ ∗ ∗ ∗ ∗ ∗
lin.ew
lin.bma
lin.op ∗
lin.cop-0.15 ∗ ∗
lin.cop-0.25 ∗
log.ew ∗
log.bma ∗ ∗
log.op ∗
log.cop-0.15 ∗∗ ∗
log.cop-0.25 ∗∗ ∗
beta.op ∗ ∗ ∗ ∗∗
beta.cop-0.15 ∗ ∗ ∗ ∗ ∗ ∗
beta.cop-0.25 ∗ ∗ ∗ ∗ ∗ ∗

FTSE

egarch.st
egarch.sged ∗
gjr.st
gjr.sged ∗
tgarch.st
tgarch.sged ∗ ∗ ∗
gas.st ∗ ∗ ∗∗ ∗∗ ∗
gas.sged ∗ ∗∗ ∗∗ ∗
lin.ew ∗ ∗∗
lin.bma ∗ ∗ ∗∗
lin.op ∗ ∗∗ ∗∗
lin.cop-0.15 ∗ ∗∗
lin.cop-0.25 ∗ ∗∗
log.ew ∗∗ ∗∗
log.bma ∗ ∗ ∗∗
log.op ∗ ∗∗
log.cop-0.15 ∗ ∗
log.cop-0.25 ∗ ∗∗
beta.op ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗
beta.cop-0.15 ∗∗ ∗
beta.cop-0.25 ∗∗ ∗∗
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Table 3: Continued from previous page

Bayesian predictives ML predictives

UC MCS CAViaR UC MCS CAViaR

Nikkei

egarch.st ∗
egarch.sged ∗ ∗
gjr.st
gjr.sged
tgarch.st
tgarch.sged
gas.st
gas.sged
lin.ew
lin.bma
lin.op
lin.cop-0.15
lin.cop-0.25
log.ew
log.bma
log.op
log.cop-0.15
log.cop-0.25
beta.op ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗
beta.cop-0.15 ∗ ∗
beta.cop-0.25 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗

S&P500

egarch.st ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗
egarch.sged ∗∗ ∗∗ ∗∗ ∗∗
gjr.st ∗
gjr.sged
tgarch.st
tgarch.sged
gas.st ∗ ∗ ∗∗ ∗
gas.sged ∗
lin.ew
lin.bma ∗ ∗
lin.op ∗ ∗
lin.cop-0.15 ∗ ∗
lin.cop-0.25 ∗
log.ew ∗
log.bma ∗ ∗∗ ∗
log.op ∗ ∗∗ ∗ ∗ ∗∗ ∗
log.cop-0.15 ∗ ∗
log.cop-0.25 ∗ ∗∗
beta.op ∗∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗
beta.cop-0.15 ∗∗ ∗
beta.cop-0.25 ∗ ∗
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Table 4: Statistical significance results for the backtest of one-day ahead VaR forecasts at the 5% risk level obtained
from Bayesian and ML predictive densities produced by our GARCH-type models and from combinations of these
densities. VaR forecasts are generated for 2015 daily returns of the DJIA, FTSE, Nikkei and S&P500 indexes. The
symbols ∗, ∗∗ and ∗∗∗ indicate significance at 10%, 5% and 1%, respectively. The UC, CC, MCS and CAViaR tests
are presented in Subsection 4.1. Definitions of model acronyms can be obtained in Table A.1.

Bayesian predictives ML predictives

UC CC MCS CAViaR UC CC MCS CAViaR

DJIA

egarch.st ∗ ∗
egarch.sged
gjr.st ∗ ∗
gjr.sged
tgarch.st
tgarch.sged
gas.st ∗∗ ∗ ∗∗ ∗ ∗∗
gas.sged ∗ ∗
lin.ew
lin.bma
lin.op
lin.cop-0.15
lin.cop-0.25
log.ew
log.bma
log.op
log.cop-0.15 ∗
log.cop-0.25
beta.op ∗ ∗∗
beta.cop-0.15
beta.cop-0.25

FTSE

egarch.st ∗ ∗∗ ∗∗ ∗∗ ∗
egarch.sged ∗∗ ∗∗ ∗ ∗∗
gjr.st ∗ ∗
gjr.sged ∗
tgarch.st ∗∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗
tgarch.sged ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗
gas.st ∗ ∗∗ ∗
gas.sged ∗
lin.ew
lin.bma ∗ ∗ ∗
lin.op ∗ ∗∗ ∗
lin.cop-0.15 ∗ ∗ ∗
lin.cop-0.25 ∗
log.ew ∗
log.bma ∗ ∗ ∗
log.op ∗ ∗ ∗
log.cop-0.15 ∗ ∗ ∗
log.cop-0.25 ∗ ∗∗ ∗
beta.op ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
beta.cop-0.15 ∗ ∗ ∗ ∗ ∗ ∗
beta.cop-0.25 ∗ ∗ ∗ ∗ ∗ ∗
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Table 4: Continued from previous page

Bayesian predictives ML predictives

UC CC MCS CAViaR UC CC MCS CAViaR

Nikkei

egarch.st
egarch.sged
gjr.st
gjr.sged
tgarch.st
tgarch.sged
gas.st
gas.sged
lin.ew
lin.bma
lin.op
lin.cop-0.15
lin.cop-0.25
log.ew
log.bma
log.op
log.cop-0.15
log.cop-0.25
beta.op
beta.cop-0.15
beta.cop-0.25

S&P500

egarch.st ∗∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗ ∗
egarch.sged ∗ ∗∗ ∗∗
gjr.st ∗ ∗ ∗∗
gjr.sged
tgarch.st
tgarch.sged
gas.st ∗ ∗∗ ∗∗ ∗ ∗∗
gas.sged ∗
lin.ew
lin.bma
lin.op ∗
lin.cop-0.15
lin.cop-0.25
log.ew
log.bma
log.op ∗
log.cop-0.15
log.cop-0.25 ∗
beta.op
beta.cop-0.15
beta.cop-0.25
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Table 5: Statistical significance results for the analysis of rescaled PITs for observations below one-day ahead VaR
forecasts at the 5% risk level obtained from Bayesian and ML predictive densities and combinations of such densities.
VaR forecasts are generated for 2015 daily returns of the DJIA, FTSE, Nikkei and S&P500 indexes. The symbols
∗, ∗∗ and ∗∗∗ indicate significance at 10%, 5% and 1%, respectively. The ARCH, JB and LR tests are presented in
Subsection 4.1. Definitions of model acronyms can be obtained in Table A.1.

Bayesian predictives ML predictives

ARCH JB LR ARCH JB LR

DJIA

egarch.st
egarch.sged ∗ ∗∗
gjr.st
gjr.sged ∗ ∗ ∗ ∗ ∗ ∗
tgarch.st ∗∗
tgarch.sged ∗ ∗ ∗ ∗
gas.st
gas.sged ∗
lin.ew
lin.bma ∗
lin.op
lin.cop-0.15 ∗
lin.cop-0.25 ∗ ∗ ∗
log.ew ∗
log.bma ∗ ∗ ∗
log.op ∗∗
log.cop-0.15 ∗∗
log.cop-0.25 ∗∗ ∗
beta.op ∗ ∗ ∗
beta.cop-0.15 ∗ ∗ ∗ ∗ ∗ ∗
beta.cop-0.25 ∗ ∗ ∗ ∗ ∗ ∗

FTSE

egarch.st ∗∗
egarch.sged ∗∗
gjr.st ∗
gjr.sged ∗∗ ∗∗
tgarch.st ∗
tgarch.sged ∗∗ ∗
gas.st ∗ ∗
gas.sged ∗ ∗ ∗∗
lin.ew ∗∗
lin.bma
lin.op
lin.cop-0.15
lin.cop-0.25
log.ew ∗
log.bma
log.op
log.cop-0.15
log.cop-0.25
beta.op
beta.cop-0.15
beta.cop-0.25
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Table 5: Continued from previous page

Bayesian predictives ML predictives

ARCH JB LR ARCH JB LR

Nikkei

egarch.st ∗ ∗ ∗ ∗∗
egarch.sged ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
gjr.st ∗∗ ∗ ∗ ∗ ∗ ∗∗
gjr.sged ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗
tgarch.st ∗∗ ∗∗
tgarch.sged ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
gas.st ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
gas.sged ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
lin.ew ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗∗
lin.bma ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗
lin.op ∗∗ ∗∗ ∗ ∗ ∗ ∗∗
lin.cop-0.15 ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗
lin.cop-0.25 ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗
log.ew ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
log.bma ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
log.op ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗
log.cop-0.15 ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
log.cop-0.25 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
beta.op ∗∗ ∗∗
beta.cop-0.15 ∗∗ ∗ ∗ ∗
beta.cop-0.25 ∗ ∗∗ ∗ ∗ ∗ ∗∗

S&P500

egarch.st
egarch.sged ∗ ∗ ∗ ∗∗
gjr.st
gjr.sged ∗∗ ∗ ∗ ∗
tgarch.st
tgarch.sged ∗ ∗ ∗ ∗ ∗ ∗ ∗
gas.st
gas.sged ∗∗ ∗∗
lin.ew ∗ ∗∗
lin.bma ∗∗ ∗
lin.op
lin.cop-0.15 ∗ ∗ ∗
lin.cop-0.25 ∗ ∗ ∗
log.ew ∗ ∗ ∗
log.bma ∗ ∗ ∗
log.op ∗ ∗ ∗
log.cop-0.15 ∗ ∗ ∗
log.cop-0.25 ∗ ∗ ∗
beta.op ∗ ∗ ∗ ∗ ∗ ∗∗
beta.cop-0.15 ∗ ∗ ∗ ∗ ∗ ∗ ∗
beta.cop-0.25 ∗ ∗ ∗ ∗ ∗ ∗
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Figure 1: Typical left-tail of predictive densities generated by a GARCH-type model when we use particular posterior
draws (light blue), when parameter uncertainty is integrated using the Bayesian approach (blue) and when we plug
ML estimates in the predictive (red). The Bayesian predictive is more conservative than the ML one and accounts for
more likely scenarios.
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Figure 2: Empirical distribution functions of tail PITs rescaled to lie between 0 and 1 with ideal straight lines passing
through 0 and 1. Tail PITs are produced by linear and beta linear pools of misspecified models over a forecasting
period. Weights are estimated with the OP and COP methods from observations of an estimation period.
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Figure 3: DM test statistics for significance of differences between mean (tick) asymmetric linear losses computed for
2015 daily returns of the DJIA, FTSE, Nikkei and S&P500 indexes. Left panels compare the skew GED GJR model
with Bayesian predictives to all other models. Right panels compare the EW linear pool of Bayesian predictives to
all other models. Top panels use 1% VaR forecasts while bottom panels consider 5% VaR forecasts. For each model
pair, each circle corresponds to a different index. Red lines indicate asymptotic critical values at the 5% level. More
details on the testing methodology can be found in Subsection 4.1. Definitions of model acronyms can be obtained in
Table A.1.

35



−6

−4

−2

0

2

4

6

mle.gjr.sged better when negative − 1% risk level

ba
y.

eg
ar

ch
.s

t
ba

y.
eg

ar
ch

.s
ge

d
ba

y.
gj

r.s
t

ba
y.

gj
r.s

ge
d

ba
y.

tg
ar

ch
.s

t
ba

y.
tg

ar
ch

.s
ge

d
ba

y.
ga

s.
st

ba
y.

ga
s.

sg
ed

ba
y.

lin
.e

w
ba

y.
lin

.b
m

a
ba

y.
lin

.o
p

ba
y.

lin
.c

op
−

0.
15

ba
y.

lin
.c

op
−

0.
25

ba
y.

lo
g.

ew
ba

y.
lo

g.
bm

a
ba

y.
lo

g.
op

ba
y.

lo
g.

co
p−

0.
15

ba
y.

lo
g.

co
p−

0.
25

ba
y.

be
ta

.o
p

ba
y.

be
ta

.c
op

−
0.

15
ba

y.
be

ta
.c

op
−

0.
25

m
le

.e
ga

rc
h.

st
m

le
.e

ga
rc

h.
sg

ed
m

le
.g

jr.
st

m
le

.tg
ar

ch
.s

t
m

le
.tg

ar
ch

.s
ge

d
m

le
.g

as
.s

t
m

le
.g

as
.s

ge
d

m
le

.li
n.

ew
m

le
.li

n.
bm

a
m

le
.li

n.
op

m
le

.li
n.

co
p−

0.
15

m
le

.li
n.

co
p−

0.
25

m
le

.lo
g.

ew
m

le
.lo

g.
bm

a
m

le
.lo

g.
op

m
le

.lo
g.

co
p−

0.
15

m
le

.lo
g.

co
p−

0.
25

m
le

.b
et

a.
op

m
le

.b
et

a.
co

p−
0.

15
m

le
.b

et
a.

co
p−

0.
25

0.250.25 0 0 0.250.25 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.250.25 0 0 0.250.25 0 0 0 0 0 0 0 0 0 0.25 0 0 0.5 0.5 0.5 0.250.25 0 0.250.25 0 0 0 0.250.25 0 0 0 0.250.25 0 0 0.5 0.5 0.5

−6

−4

−2

0

2

4

6

mle.gjr.sged better when negative − 5% risk level

ba
y.

eg
ar

ch
.s

t
ba

y.
eg

ar
ch

.s
ge

d
ba

y.
gj

r.s
t

ba
y.

gj
r.s

ge
d

ba
y.

tg
ar

ch
.s

t
ba

y.
tg

ar
ch

.s
ge

d
ba

y.
ga

s.
st

ba
y.

ga
s.

sg
ed

ba
y.

lin
.e

w
ba

y.
lin

.b
m

a
ba

y.
lin

.o
p

ba
y.

lin
.c

op
−

0.
15

ba
y.

lin
.c

op
−

0.
25

ba
y.

lo
g.

ew
ba

y.
lo

g.
bm

a
ba

y.
lo

g.
op

ba
y.

lo
g.

co
p−

0.
15

ba
y.

lo
g.

co
p−

0.
25

ba
y.

be
ta

.o
p

ba
y.

be
ta

.c
op

−
0.

15
ba

y.
be

ta
.c

op
−

0.
25

m
le

.e
ga

rc
h.

st
m

le
.e

ga
rc

h.
sg

ed
m

le
.g

jr.
st

m
le

.tg
ar

ch
.s

t
m

le
.tg

ar
ch

.s
ge

d
m

le
.g

as
.s

t
m

le
.g

as
.s

ge
d

m
le

.li
n.

ew
m

le
.li

n.
bm

a
m

le
.li

n.
op

m
le

.li
n.

co
p−

0.
15

m
le

.li
n.

co
p−

0.
25

m
le

.lo
g.

ew
m

le
.lo

g.
bm

a
m

le
.lo

g.
op

m
le

.lo
g.

co
p−

0.
15

m
le

.lo
g.

co
p−

0.
25

m
le

.b
et

a.
op

m
le

.b
et

a.
co

p−
0.

15
m

le
.b

et
a.

co
p−

0.
25

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.25 0 0 0 0.5 0.5 0 0 0 0 0.25 0 0 0 0.250.25 0 0 0 0.25 0 0.25 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0.250.250.25

−6

−4

−2

0

2

4

6

mle.lin.ew better when negative − 1% risk level

ba
y.

eg
ar

ch
.s

t
ba

y.
eg

ar
ch

.s
ge

d
ba

y.
gj

r.s
t

ba
y.

gj
r.s

ge
d

ba
y.

tg
ar

ch
.s

t
ba

y.
tg

ar
ch

.s
ge

d
ba

y.
ga

s.
st

ba
y.

ga
s.

sg
ed

ba
y.

lin
.e

w
ba

y.
lin

.b
m

a
ba

y.
lin

.o
p

ba
y.

lin
.c

op
−

0.
15

ba
y.

lin
.c

op
−

0.
25

ba
y.

lo
g.

ew
ba

y.
lo

g.
bm

a
ba

y.
lo

g.
op

ba
y.

lo
g.

co
p−

0.
15

ba
y.

lo
g.

co
p−

0.
25

ba
y.

be
ta

.o
p

ba
y.

be
ta

.c
op

−
0.

15
ba

y.
be

ta
.c

op
−

0.
25

m
le

.e
ga

rc
h.

st
m

le
.e

ga
rc

h.
sg

ed
m

le
.g

jr.
st

m
le

.g
jr.

sg
ed

m
le

.tg
ar

ch
.s

t
m

le
.tg

ar
ch

.s
ge

d
m

le
.g

as
.s

t
m

le
.g

as
.s

ge
d

m
le

.li
n.

bm
a

m
le

.li
n.

op
m

le
.li

n.
co

p−
0.

15
m

le
.li

n.
co

p−
0.

25
m

le
.lo

g.
ew

m
le

.lo
g.

bm
a

m
le

.lo
g.

op
m

le
.lo

g.
co

p−
0.

15
m

le
.lo

g.
co

p−
0.

25
m

le
.b

et
a.

op
m

le
.b

et
a.

co
p−

0.
15

m
le

.b
et

a.
co

p−
0.

25

0 0 0 0.25 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.25 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5 0.250.25 0 0 0 0 0.250.25 0 0 0.250.25 0 0 0.25 0.5 0.25 0.5 0.5 0.5

−6

−4

−2

0

2

4

6

mle.lin.ew better when negative − 5% risk level

ba
y.

eg
ar

ch
.s

t
ba

y.
eg

ar
ch

.s
ge

d
ba

y.
gj

r.s
t

ba
y.

gj
r.s

ge
d

ba
y.

tg
ar

ch
.s

t
ba

y.
tg

ar
ch

.s
ge

d
ba

y.
ga

s.
st

ba
y.

ga
s.

sg
ed

ba
y.

lin
.e

w
ba

y.
lin

.b
m

a
ba

y.
lin

.o
p

ba
y.

lin
.c

op
−

0.
15

ba
y.

lin
.c

op
−

0.
25

ba
y.

lo
g.

ew
ba

y.
lo

g.
bm

a
ba

y.
lo

g.
op

ba
y.

lo
g.

co
p−

0.
15

ba
y.

lo
g.

co
p−

0.
25

ba
y.

be
ta

.o
p

ba
y.

be
ta

.c
op

−
0.

15
ba

y.
be

ta
.c

op
−

0.
25

m
le

.e
ga

rc
h.

st
m

le
.e

ga
rc

h.
sg

ed
m

le
.g

jr.
st

m
le

.g
jr.

sg
ed

m
le

.tg
ar

ch
.s

t
m

le
.tg

ar
ch

.s
ge

d
m

le
.g

as
.s

t
m

le
.g

as
.s

ge
d

m
le

.li
n.

bm
a

m
le

.li
n.

op
m

le
.li

n.
co

p−
0.

15
m

le
.li

n.
co

p−
0.

25
m

le
.lo

g.
ew

m
le

.lo
g.

bm
a

m
le

.lo
g.

op
m

le
.lo

g.
co

p−
0.

15
m

le
.lo

g.
co

p−
0.

25
m

le
.b

et
a.

op
m

le
.b

et
a.

co
p−

0.
15

m
le

.b
et

a.
co

p−
0.

25

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.250.25 0 0 0 0 0.5 0.5 0 0 0 0.250.250.25 0 0 0.25 0 0 0.250.250.75 0.5 0 0 0 0.250.750.75 0 0 0 0.25 0 0 0 0.25 0.5 0.25 0.5 0.5

Figure 4: DM test statistics for significance of differences between mean (tick) asymmetric linear losses computed for
2015 daily returns of the DJIA, FTSE, Nikkei and S&P500 indexes. Left panels compare the skew GED GJR model
with ML predictives to all other models. Right panels compare the EW linear pool of ML predictives to all other
models. Top panels use 1% VaR forecasts while bottom panels consider 5% VaR forecasts. For each model pair, each
circle corresponds to a different index. Red lines indicate asymptotic critical values at the 5% level. More details on
the testing methodology can be found in Subsection 4.1. Definitions of model acronyms can be obtained in Table A.1.
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Appendix

A. Some acronyms

Table A.1: Definitions of model acronyms that are used in Tables and Figures for Bayesian predictives. Model
acronyms for ML predictives are similar but start with “mle”. Sometimes the type of predictives used is not specified
in the acronym when it is clear from the context.

bay.egarch.st Skew Student EGARCH model (Bayesian predictives)

bay.egarch.sged Skew GED EGARCH model (Bayesian predictives)

bay.gjr.st Skew Student GJR model (Bayesian predictives)

bay.gjr.sged Skew GED GJR model (Bayesian predictives)

bay.tgarch.st Skew Student TGARCH model (Bayesian predictives)

bay.tgarch.sged Skew GED TGARCH model (Bayesian predictives)

bay.gas.st Skew Student GAS model (Bayesian predictives)

bay.gas.sged Skew GED GAS model (Bayesian predictives)

bay.lin.ew EW linear pool of Bayesian predictives

bay.lin.bma Linear pool of Bayesian predictives with BMA weights

bay.lin.op Linear pool of Bayesian predictives with OP weights

bay.lin.cop-0.15 Linear pool of Bayesian predictives with COP weights (15% censoring)

bay.lin.cop-0.25 Linear pool of Bayesian predictives with COP weights (25% censoring)

bay.log.ew EW log pool of Bayesian predictives

bay.log.bma Log pool of Bayesian predictives with BMA weights

bay.log.op Log pool of Bayesian predictives with OP weights

bay.log.cop-0.15 Log pool of Bayesian predictives with COP weights (15% censoring)

bay.log.cop-0.25 Log pool of Bayesian predictives with COP weights (25% censoring)

bay.beta.op Beta linear pool of Bayesian predictives with OP weights

bay.beta.cop-0.15 Beta linear pool of Bayesian predictives with COP weights (15% censoring)

bay.beta.cop-0.25 Beta linear pool of Bayesian predictives with COP weights (25% censoring)
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MSGARCH-package The R package MSGARCH

Description

The R package MSGARCH aims to provide a comprehensive set of functionalities for Markov-switching
GARCH processes (Haas et al. 2004), including fitting, filtering, forecasting, and simulating. Other
functions related to Value-at-Risk, Expected-Shortfall, and conditional distributions are also avail-
able. The main functions of the package are coded in C++ with Rcpp (Eddelbuettel and Francois,
2011) and RcppArmadillo (Eddelbuettel and Sanderson, 2014). In the R package MSGARCH there
is no equation for the mean as in the R package rugarch (Ghalanos, 2015). This means that we
assume that before modeling, the user has filtered the mean from their time series.
We provide a variety of single-regime GARCH processes and regime-switching allowing for many
conditional distributions. This allows for a rich modeling environment for Markov-switching GARCH
models. Each single-regime process is a one-lag process (e.g., GARCH(1,1)). Allowing for only
one-lag has proved to be sufficient in many cases and it reduces models complexity which can
become a problem during the optimization procedure. When optimization is taking place, we
ensure that each regime is covariance-stationary and strictly positive (see details in kernel for
more information) which makes the entire process also covariance-stationary and strickly positive.
We also set a condition that each unique single-regime models type in a multiple-regime frame-
work are in order of unconditional volatility. This means that is if a three regimes specification
with two sGARCH regimes and one gjrGARCH regime is constructed with create.spec, the first
sGARCH regime will have a lower unconditional volatility than the second sGARCH regime while
the gjrGARCH regime can have any unconditional volatility since it is the only regime with this
model. For a full demonstration of the package please read Markov-Switching GARCH Models in
R: The MSGARCH Package (see https://ssrn.com/abstract=2845809). The authors acknowl-
edge Google for financial support via the Google Summer of Code 2016 project "MSGARCH"; see
https://summerofcode.withgoogle.com/projects/#6497774455488512 , the International In-
stitute of Forecasting and Industrielle-Alliance.

References

Ardia, D. and Bluteau, K. and Boudt, K. and Trottier, D.-A. (2016). Markov-Switching GARCH
Models in R: The MSGARCH Package. https://ssrn.com/abstract=2845809

Eddelbuettel, D. Francois, R. (2011). Rcpp: Seamless R and C++ Integration. Journal of Statistical
Software, 40, pp. 1-18, http://www.jstatsoft.org/v40/i08/.

Eddelbuettel, D. Sanderson, C. (2014). RcppArmadillo: Accelerating R with High–Performance
C++ Linear Algebra. Computational Statistics & Data Analysis, 71, pp. 1054-1063, http://dx.
doi.org/10.1016/j.csda.2013.02.005.

Haas, M. Mittnik, S. Paolella, MS. (2004). A New Approach to Markov-Switching GARCH Mod-
els. Journal of Financial Econometrics, 2, pp. 493-530, http://doi.org/10.1093/jjfinec/
nbh020

https://ssrn.com/abstract=2845809
https://summerofcode.withgoogle.com/projects/#6497774455488512
https://ssrn.com/abstract=2845809
http://www.jstatsoft.org/v40/i08/
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://doi.org/10.1093/jjfinec/nbh020
http://doi.org/10.1093/jjfinec/nbh020


AIC 3

Ghalanos, A. (2015). rugarch: Univariate GARCH Models. https://cran.r-project.org/
package=rugarch.

AIC Compute Akaike information criterion (AIC).

Description

Compute Akaike information criterion (AIC).

Usage

AIC(fit)

Arguments

fit Fit object of type MSGARCH_MLE_FIT created with fit.mle or MSGARCH_BAY_FIT
created with fit.bayes.

Details

Compute Akaike information criterion (AIC) based on the work of Akaike (Akaike, 1974). If a
matrix of MCMC posterior draws estimates is given, the AIC on the posterior mean is calculated.

Value

AIC value.

References

Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions on
Automatic Control, 19, pp. 716-723.

Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model by MLE
fit = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = list(do.init = FALSE))

# compute AIC
AIC = MSGARCH::AIC(fit)

https://cran.r-project.org/package=rugarch
https://cran.r-project.org/package=rugarch
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AMZN Log return of Amazon inc. closing Value

Description

The Amazon inc. closing value log return from 1998-01-01 to 2015-12-31 from Yahoo Finance
https://finance.yahoo.com/.

Usage

data("AMZN")

Format

Matrix containing 4,529 observations.

Source

Yahoo Finance https://finance.yahoo.com/

BIC Compute Bayesian information criterion (BIC).

Description

Compute Bayesian information criterion (BIC).

Usage

BIC(fit)

Arguments

fit Fit object of type MSGARCH_MLE_FIT created with fit.mle or MSGARCH_BAY_FIT
created with fit.bayes

Details

Compute Bayesian information criterion (BIC) based on the work of Schwarz (Schwarz, 1978). If
a matrix of MCMC posterior draws estimates is given, the BIC on the posterior mean is calculated.

Value

BIC value.

References

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, pp. 461-464.

https://finance.yahoo.com/
https://finance.yahoo.com/
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Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model by MLE
fit = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = list(do.init = FALSE))

# compute BIC
BIC = MSGARCH::BIC(fit)

cdf Cumulative distribution function.

Description

Method returning the cumulative distribution function in-sample or of a vector of points consider
as one step ahead draws (t = T + 1).

Usage

cdf(object, x, theta, y, log = FALSE, do.its = FALSE)

Arguments

object Model specification of class MSGARCH_SPEC created with create.spec or fit
object of type MSGARCH_MLE_FIT created with fit.mle or MSGARCH_BAY_FIT
created with fit.bayes.

x Vector (of size N) of points evaluated at t = T + 1 (used when do.its = FALSE).

theta Vector (of size d) or matrix (of size M x d) of parameter estimates (not required
when using a fit object) where d must have the same length as the default pa-
rameters of the specification.

y Vector (of size T) of observations (not required when using a fit object).

log Boolean indicating if the log cumulative is returned. (Default: log = FALSE)

do.its Boolean indicating if the in-sample cdf is returned. (Default: do.its = FALSE)

Details

If a matrix of parameter estimates is given, each parameter estimate (each row) is evaluated indi-
vidually. If do.its = FALSE, the points x are evaluated as t = T + 1 realizations and the method
uses the variance estimate at t = T + 1. If do.its = TRUE, y is evaluated using their respective
variance estimate at each time t.
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Value

A list of class MSGARCH_CDF containing three components:

• cdf:
If do.its = FALSE: (Log-)Cumulative of the points x at t = T + 1 (vector of size N or matrix
of size M x N).
If do.its = TRUE: In-sample (Log-)Cumulative of y (vector of size T or matrix of size M x
T).

• x:
If do.its = FALSE: Vector (of size N) of points evaluated at t = T + 1.
If do.its = TRUE: Vector (of size T) of observations.

• do.its: Orinigal user inputed do.its for reference.

The class MSGARCH_CDF contains the plot method only if do.its = FALSE.

Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model on the data with ML estimation
set.seed(123)
fit = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = list(do.init = FALSE))

# run pdf method in-sample
cdf.its = MSGARCH::cdf(object = fit, log = FALSE, do.its = TRUE)

# create mesh
x = seq(-3,3,0.01)

# run cdf method on mesh at T + 1
cdf = MSGARCH::cdf(object = fit, x = x, log = FALSE, do.its = FALSE)

plot(cdf)

create.spec Model specification

Description

Function for creating a model specification before fitting and using the R package MSGARCH func-
tionalities.

Usage

create.spec(model = c("sGARCH", "sGARCH"), distribution = c("norm", "norm"),
do.skew = c(FALSE, FALSE), do.mix = FALSE, do.shape.ind = FALSE)
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Arguments

model Vector (of size K) containing the variance model specifications. Valid models
are "sGARCH", "eGARCH", "gjrGARCH", "tGARCH", and "GAS".
(Default: model = c("sGARCH", "sGARCH"))

distribution Vector (of size K) of conditional densities. Valid distributions are "norm",
"std", and "ged". The vector must be of the same length as the models’ vector.
(Default: distribution = c("norm", "norm"))

do.skew Vector (of size K) of boolean indicating if the conditional density is skewed.
The vector must be of the same length as the distributions’ vector.
(Default: do.skew = c(FALSE, FALSE))

do.mix Boolean indicating if the specification is a mixture type. If the argument is TRUE,
a Mixture of GARCH is created, while if the argument is FALSE, a Markov-
Switching GARCH is created (see details). (Default: do.mix = FALSE)

do.shape.ind Boolean indicating if the distribution are Regime-Independent. If the argument
is TRUE, all distributions are the same and the distribution parameters do not
depend on the regime to which the distribution is attributed. If the argument is
TRUE, all distributions in the distribution argument and all skew arguments must
be the same. (Default: do.shape.ind = FALSE)

Details

The Markov-Switching specification created is based on the Haas et al. (2004a) MSGARCH spec-
ification. It is a MSGARCH model that is separated in K single-regimes specifications which are
updated in parallel. Under the Haas et al. (2004a) specification, the conditional variance is a func-
tion of the past data and the current state. The Mixture of GARCH option is based on Haas et
al. (2004b). A Mixture of GARCH is a mixture of distributions where the variance process of
each distribution is a single-regime process. Every single-regime specification is a one-lag process
(e.g., GARCH(1,1)) since it has proved to be sufficient in financial econometrics. This simplifi-
cation of the processes also reduces models’ complexity which can become a problem during the
optimization procedure.

Value

A list of class MSGARCH_SPEC containing variables related to the created specification.
The list contains:

• theta0 : Vector (of size d) of default parameters.

• is.mix : Boolean indicating if the specification is a mixture.

• is.shape.ind : Boolean indicating if the distributions’ parameters are regime-independent.

• K : Number of regimes.

• sigma0 : Default variance-covariance matrix (of size K x K) used for the Bayesian esimation.

• lower : Vector (of size d) of lower parameters’ bounds.

• upper : Vector (of size d) of upper parameters’ bounds.

• ineqlb : Vector (of size d) of lower inequality bounds.

• inequb : Vector (of size d) of upper inequality bounds.

• n.params : Vector (of size K) of the total number of parameters by regime including distribu-
tions’ parameters.
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• n.params.vol : Vector (of size K) of the total number of parameters by regime excluding
distributions’ parameters.

• do.init : Boolean indicating the default do.init argument.

• label : Vector (of size d) of parameters’ labels.

• name : Vector (of size K) of model specifications’ names.

• func : List of internally used R functions.

• rcpp.func : List of internally used Rcpp functions.

The MSGARCH_SPEC class possesses these methods:

• sim : Simulation method.

• simahead : Step ahead simulation method.

• ht : Conditional volatility in each regime.

• kernel : Kernel method.

• unc.vol : Unconditional volatility in each regime.

• pred : Predictive method.

• pit : Probability Integral Transform.

• risk : Value-at-Risk And Expected-Shortfall methods.

• pdf : Probability density function.

• cdf : Cumulative distribution function.

• Pstate : State probabilities filtering method.

• fit.mle : Maximum Likelihood estimation.

• fit.bayes : Bayesian estimation.

• print and summary : Summary of the created specification.

References

Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econo-
metrics, 31, pp. 307-327.

Creal, D. Koopman, S. J. & Lucas, A. (2013). Generalized Autoregressive Score Models with
Applications. Journal of Applied Econometrics, 28, pp. 777-795.

Fernandez, C. & Steel, M. F. (1998). On Bayesian Modeling of Fat Tails and Skewness. Journal of
the American Statistical Association, 93, pp. 359-371.

Glosten, L. R. Jagannathan, R. & Runkle, D. E. (1993). On the Relation Between the Expected
Value and the Volatility of the Nominal Excess Return on Stocks. Journal of Finance, 48, pp.
1779-1801.

Haas, M. Mittnik, S. & Paolella, M. S. (2004a). A New Approach to Markov-Switching GARCH
Models. Journal of Financial Econometrics, 2, pp. 493-530.

Haas, M. Mittnik, S. & Paolella, M. S. (2004b). Mixed Normal Conditional Heteroskedasticity.
Journal of Financial Econometrics, 2, pp. 211-250.

Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econo-
metrica, 59, pp. 347-370.

Zakoian, J.-M. (1994). Threshold Heteroskedastic Models. Journal of Economic Dynamics and
Control, 18, pp. 931-955.
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Examples

# create model specification
spec = MSGARCH::create.spec(model = c("sGARCH","gjrGARCH"), distribution = c("norm","std"),

do.skew = c(TRUE,FALSE), do.mix = FALSE, do.shape.ind = FALSE)
print(spec)

crps CRPS (continuous ranked probability score) measure.

Description

Method returning the CRPS at t = T + 1.

Usage

crps(object, yn, ctr = list(lower = -20, upper = 20, n.mesh = 500, a = 0, b =
1))

Arguments

object Model specification of class MSGARCH_SPEC created with create.spec or fit
object of type MSGARCH_MLE_FIT created with fit.mle or MSGARCH_BAY_FIT
created with fit.bayes.

yn Scalar value to be evaluated at t = T + 1.

ctr Control list parameters.

Details

If a matrix of MCMC posterior draws estimates is given, the Bayesian CRPS is calculated.

Value

A vector with five crps measures

Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model on the data with ML estimation
set.seed(123)
fit = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = list(do.init = FALSE))

# run at T + 1 from model
crps = MSGARCH::crps(object = fit, yn = 0.6)



10 DIC

DIC Compute Deviance Information Criterion (DIC).

Description

Compute Deviance Information Criterion (DIC).

Usage

DIC(fit)

Arguments

fit Fit object of type MSGARCH_BAY_FIT created with fit.bayes.

Details

Compute the Deviance information criterion of Spiegelhalter, David J., et al. (2002). We define the
deviance as:

D(θ) = −2LLH(y|θ),

where y are the data, θ are the parameters, and LLH() is the log-likelihood function. The expectation

D̄ = Eθ[D(θ)],

where Eθ is the expectation over all theta in a MCMC chain, is a measure of how well the model
fits the data. The larger this expectation is, the worse is the fit. The effective number of parameters
of the model can be defined as

pV =
1

2
v̂ar (D(θ)) ,

where v̂ar is the the population variance estimator. The larger the effective number of parameters
is, the easier it is for the model to fit the data, and so the deviance needs to be penalized. Finally
DIC is defined as:

DIC = pV + D̄.

Value

A list containing four variables:

• DIC : Deviance Information Criterion.

• IC : Bayesian Predictive Information Criterion (IC = 2 * pV + D.bar).

• pV : Effective number of parameters (pV = var(D)/2)

• D.bar: Expected value of the deviance over the posterior

References

Spiegelhalter, David J., et al. (2002). Bayesian measures of model complexity and fit. Journal of
the Royal Statistical Society: Series B (Statistical Methodology)
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Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model by Bayesian estimation
set.seed(123)
fit = MSGARCH::fit.bayes(spec = spec, y = sp500)

# compute DIC
DIC = MSGARCH::DIC(fit)

fit.bayes Bayesian estimation.

Description

Method that performs Bayesian estimation of a MSGARCH_SPEC object on a set of observations.

Usage

fit.bayes(spec, y, ctr = list())

Arguments

spec Model specification of class MSGARCH_SPEC created with create.spec.

y Vector (of size T) of observations.

ctr A list of control parameters.
The control parameters have three components:

• N.burn (integer >= 0): Number of discarded draws. (Default: N.burn = 5000)
• N.mcmc (integer > 0) : Number of draws. (Default: N.mcmc = 10000)
• N.thin (integer > 0) : Thinning factor (every N.thin draws are kept). (De-

fault: N.thin = 10)
• theta0 : Starting value for the chain (if empty the specification default

values are used).
• do.enhance.theta0 : Boolean indicating if the default parameters values

are enhanced using y variance. (Default: do.enhance.theta0 = FALSE)

Details

The total number of draws is equal to N.mcmc / N.thin. The Bayesian estimation uses the R
package adaptMCMC (Andreas, 2012) which implements the adaptive sampler of Vihola (2012). The
starting parameters are the specification default parameters. The argument do.enhance.theta0
uses the volatilities of rolling windows of y and adjusts the default parameter of the specification so
that the unconditional volatility of each regime is set to different quantiles of the volatilities of the
rolling windows of y.
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Value

A list of class MSGARCH_BAY_FIT containing four components:

• theta : The MCMC chain (matrix from the R package coda (Plummer et al., 2006) of size
N.mcmc / N.thin).

• accept : Acceptation rate of the sampler.

• y : Vector (of size T) of observations.

• spec : Model specification of class MSGARCH_SPEC created with create.spec.

The MSGARCH_BAY_FIT contains these methods:

• AIC : Compute Akaike information criterion (AIC).

• BIC : Compute Bayesian information criterion (BIC).

• DIC : Compute Deviance Information Criterion (DIC).

• ht : Conditional volatility in each regime.

• kernel : Kernel method.

• unc.vol : Unconditional volatility in each regime.

• pred : Predictive method.

• pit : Probability Integral Transform.

• risk : Value-at-Risk And Expected-Shortfall methods.

• simahead : Step ahead simulation method.

• sim : Simulation method.

• pdf : Probability density function.

• cdf : Cumulative distribution function.

• Pstate : State probabilities filtering method.

• summary : Summary of the fit.

References

Andreas, S. (2012). adaptMCMC: Implementation of a Generic Adaptive Monte Carlo Markov Chain
Sampler. https://cran.r-project.org/package=adaptMCMC.

Plummer, M. Best, N. Cowles, K. & Vines, K. (2006). CODA: Convergence Diagnosis and Output
Analysis for MCMC. R News, 6, pp.7-11. https://cran.r-project.org/package=coda.

Vihola, M. (2012). Robust Adaptive Metropolis Algorithm with Coerced Acceptance Rate. Statis-
tics and Computing, 22, pp. 997-1008.

Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model on the data with Bayesian estimation
set.seed(123)

https://cran.r-project.org/package=adaptMCMC
https://cran.r-project.org/package=coda
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fit = MSGARCH::fit.bayes(spec = spec, y = sp500,
ctr = list(N.burn = 500, N.mcmc = 1000, N.thin = 1))

summary(fit)

fit.mle ML estimation.

Description

Method that performs Maximum Likelihood estimation of a MSGARCH_SPEC object on a set of ob-
servations.

Usage

fit.mle(spec, y, ctr = list())

Arguments

spec Model specification created with create.spec.

y Vector (of size T) of observations.

ctr List of control parameters. The control parameters have two components to it:

• do.init : Boolean indicating if there is a pre-optimization with the R pack-
age DEoptim (Ardia et al., 2011). (Default: do.init = FALSE)

• NP : Number of parameter vectors in the population in DEoptim optimiza-
tion. (Default: NP = 200)

• itermax : Maximum iteration (population generation) allowed in DEoptim
optimization. (Default: maxit = 200)

• theta0 : Starting value for the chain (if empty the specification default
value are used).

• do.enhance.theta0 : Boolean indicating if the default parameters value
are enhance using y variance. (Default: do.enhance.theta0 = TRUE)

Details

The Maximum likelihood estimation uses the R package dfoptim (Varadhan and Borchers, 2016)
for main optimizer and nloptr (Johnson, 2014) in case of non-convergence while it uses the R
package DEoptim when do.init = TRUE as an initialization for dfoptim and nloptr. The starting
parameters are the specification default parameters. The argument do.enhance.theta0 uses the
volatilities of rolling windows of y and adjust the starting parameters of the specification so that the
unconditional volatility of each regime is set to different quantiles of the volatilities of the rolling
windows of y.

Value

A list of class MSGARCH_MLE_FIT containing five components:

• theta : Optimal parameters (vector of size d).

• log_kernel : log-kernel of y given the optimal parameters.

• spec : Model specification of class MSGARCH_SPEC created with create.spec.



14 fit.mle

• is.init : Indicating if estimation was made with do.init option.

• y : Vector (of size T) of observations.

The MSGARCH_MLE_FIT contains these methods:

• AIC : Compute Akaike information criterion (AIC).

• BIC : Compute Bayesian information criterion (BIC).

• ht : Conditional volatility in each regime.

• kernel : Kernel method.

• unc.vol : Unconditional volatility in each regime.

• pred : Predictive method.

• pit : Probability Integral Transform.

• risk : Value-at-Risk And Expected-Shortfall methods.

• simahead : Step ahead simulation method.

• sim : Simulation method.

• pdf : Probability density function.

• cdf : Cumulative distribution function.

• Pstate : State probabilities filtering method.

• summary : Summary of the fit.

References

Ardia, D. Boudt, K. Carl, P. Mullen, K. M. & Peterson, B. G. (2011). Differential Evolution with
DEoptim. R Journal, 3, pp. 27-34

Ardia, D. Mullen, K. M. Peterson, B. G. & Ulrich, J. (2015). DEoptim: Differential Evolution in R.
https://cran.r-project.org/package=DEoptim

Mullen, K. M. Ardia, D. Gil, D. L. Windover, D. Cline, J.(2011) DEoptim: An R Package for
Global Optimization by Differential Evolution. Journal of Statistical Software, 40, pp. 1-26, DOI:
http://dx.doi.org/10.18637/jss.v040.i06

Johnson, S. G. (2014). The NLopt Nonlinear-Optimization. https://cran.r-project.org/
package=nloptr.

Varadhan, R., Borchers H. W. (2016. dfoptim: Derivative-Free Optimization. https://cran.
r-project.org/package=dfoptim.

Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model on the data with ML estimation using DEoptim intialization
set.seed(123)
fit = MSGARCH::fit.mle(spec = spec, y = sp500)
summary(fit)

https://cran.r-project.org/package=DEoptim
http://dx.doi.org/10.18637/jss.v040.i06
https://cran.r-project.org/package=nloptr
https://cran.r-project.org/package=nloptr
https://cran.r-project.org/package=dfoptim
https://cran.r-project.org/package=dfoptim


ht 15

ht Conditional variance in each regime.

Description

Method returning the conditional variance of each regime.

Usage

ht(object, theta, y)

Arguments

object Model specification of class MSGARCH_SPEC created with create.spec or fit
object of type MSGARCH_MLE_FIT created with fit.mle or MSGARCH_BAY_FIT
created with fit.bayes.

theta Vector (of size d) or matrix (of size M x d) of parameter estimates (not required
when using a fit object) where d must have the same length as the default pa-
rameters of the specification.

y Vector (of size T) of observations (not required when using a fit object).

Details

If a matrix of parameter estimates is given, each parameter estimate (each row) is evaluated indi-
vidually.

Value

Condititional variance (array of size (T + 1) x M x K) in each regime.

Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model on the data with ML estimation
set.seed(123)
fit = MSGARCH::fit.mle(spec = spec, y = sp500)

# Compute the conditional variance
ht = MSGARCH::ht(object = fit)

plot(ht)
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kernel Kernel function.

Description

Method returning the kernel value of a vector of observations given a model specification.

Usage

kernel(object, theta, y, log = TRUE)

Arguments

object Model specification of class MSGARCH_SPEC created with create.spec or fit
object of type MSGARCH_MLE_FIT created with fit.mle or MSGARCH_BAY_FIT
created with fit.bayes.

theta Vector (of size d) or matrix (of size M x d) of parameter estimates (not required
when using a fit object) where d must have the same length as the default pa-
rameters of the specification.

y Vector (of size T) of observations (not require when using a fit object).

log Boolean indicating if the log kernel is returned. (Default: log = TRUE)

Details

If a matrix of parameter estimates is given, each parameter estimate (each row) is evaluated indi-
vidually. The kernel is a combination of the prior and the likelihood function. The kernel is equal
to prior(θ) + L(y|θ) where L is the likelihood of y given the parameter θ. When doing optimization,
the goal is to minimize the negative log-kernel.

• Details on the prior
The prior is different for each specification. It ensures that the θmakes the conditional variance
process stationary, positive, and that it respectsthat the sums of the probabilities in the case of
a multiple-regime model are all equal to 1. If any of these three conditions is not respected the
prior returns -1e10, meaning that the optimizer or the sampler will know that θ is not a good
candidate.

Value

(Log-)Kernel value (scalar or vector of size M) of the vector of observations.

References

Hamilton, J. D. (1989) A New Approach to the Economic Analysis of Nonstationary Time Series
and the Business Cycle. Econometrica, 57, pp.357-38
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Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model on the data with ML estimation
set.seed(123)
fit = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = list(do.init = FALSE))

# compute the kernel
kernel = MSGARCH::kernel(fit, log = TRUE)

pdf Probability density function.

Description

Method returning the probability density in-sample or of a vector of points consider as one step
ahead draws (t = T + 1).

Usage

pdf(object, x, theta, y, log = FALSE, do.its = FALSE)

Arguments

object Model specification of class MSGARCH_SPEC created with create.spec or fit
object of type MSGARCH_MLE_FIT created with fit.mle or MSGARCH_BAY_FIT
created with fit.bayes.

x Vector (of size N) of points evaluated at t = T + 1 (used when do.its = FALSE).

theta Vector (of size d) or matrix (of size M x d) of parameter estimates (not required
when using a fit object) where d must have the same length as the default pa-
rameters of the specification.

y Vector (of size T) of observations (not required when using a fit object).

log Boolean indicating if the log-density is returned. (Default: log = FALSE)

do.its Boolean indicating if the in-sample pdf is returned. (Default: do.its = FALSE)

Details

If a matrix of parameter estimates is given, each parameter estimate (each row) is evaluated indi-
vidually. If do.its = FALSE, the points x are evaluated as t = T + 1 realization and the method
uses the variance estimate at t = T + 1. If do.its = TRUE, y is evaluated using their respective
variance estimate at each time t.
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Value

A list of class MSGARCH_PDF containing three components:

• pdf:
If do.its = FALSE: (Log-)Probability density of the points x at t = T + 1 (vector of size N
or matrix of size M x N)
If do.its = TRUE: In-sample (Log-)Probability density of y (vector of size T or matrix of size
M x T).

• x:
If do.its = FALSE: Vector (of size N) of points evaluated at t = T + 1.
If do.its = TRUE: Vector (of size T) of observations.

• do.its: Orinigal user inputed do.its for reference.

The class MSGARCH_PDF contains the plot method only if do.its = FALSE.

Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model on the data with ML estimation using DEoptim intialization
set.seed(123)
fit = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = list(do.init = FALSE))

# run pdf method in-sample
pdf.its = MSGARCH::pdf(object = fit, log = FALSE, do.its = TRUE)

sum(pdf.its$pdf, na.rm = TRUE)
# create mesh

x = seq(-3,3,0.01)

# run pdf method on mesh at T + 1
pdf = MSGARCH::pdf(object = fit, x = x, log = FALSE, do.its = FALSE)

plot(pdf)

pit Probability Integral Transform.

Description

Method returning the predictive probability integral transform (PIT) in-sample or of a vector of
points consider as one step ahead draws (t = T + 1).

Usage

pit(object, x, theta, y, do.norm = FALSE, do.its = FALSE)
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Arguments

object Model specification of class MSGARCH_SPEC created with create.spec or fit
object of type MSGARCH_MLE_FIT created with fit.mle or MSGARCH_BAY_FIT
created with fit.bayes.

x Vector (of size N) of pointsevaluated at t = T + 1 (used when do.its = FALSE).

theta Vector (of size d) or matrix (of size M x d) of parameter estimates (not required
when using a fit object) where d must have the same length as the default pa-
rameters of the specification.

y Vector (of size T) of observations (not required when using a fit object).

do.norm Boolean indicating if the PIT values are transformed into standard Normal vari-
ate. (Default: do.norm = FALSE).

do.its Boolean indicating if the in-sample pit is returned. (Default: do.its = FALSE)

Details

If a matrix of MCMC posterior draws estimates is given, the Bayesian probability integral transform
is calculated. If do.its = FALSE, the points x are evaluated as t = T + 1 realizations and the
method uses the variance estimate at t = T + 1. If do.its = TRUE, y is evaluated using their
respective variance estimate at each time t. The do.norm argument transforms the PIT value into
Normal variates so that normality test can be done.

Value

A list of class MSGARCH_PIT containing three components:

• pit:
If do.its = FALSE: probability integral transform of the points x at t = T + 1 or Normal
variate derived from the probability integral transform of x (vector of size N).
If do.its = TRUE: In-sample probability integral transform or Normal variate derived from
the probability integral transform of y (vector of size T or matrix of size M x T).

• x:
If do.its = FALSE: Vector (of size N) of at points evaluated at t = T + 1.
If do.its = TRUE: Vector (of size T) of observations.

• do.its: Orinigal user inputed do.its for reference.

The class MSGARCH_PIT contains the plot method only if do.its = FALSE.

Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model on the data with ML estimation
set.seed(123)
fit = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = list(do.init = FALSE))

# run pit method in-sample



20 pred

pit.its = MSGARCH::pit(object = fit, do.norm = FALSE, do.its = TRUE)

plot(pit.its)

# generate random draws at T + 1 from model
set.seed(123)
sim.ahead = MSGARCH::simahead(object = fit, n = 1, m = 100)

x = sim.ahead$draws

# run pit method on random draws at T + 1 from model
pit = MSGARCH::pit(object = fit, x = x, do.norm = FALSE)

plot(pit)

pred Predictive function.

Description

Method returning the predictive probability density in-sample or of a vector of points consider as
one step ahead draws (t = T + 1).

Usage

pred(object, x, theta, y, log = FALSE, do.its = FALSE)

Arguments

object Model specification of class MSGARCH_SPEC created with create.spec or fit
object of type MSGARCH_MLE_FIT created with fit.mle or MSGARCH_BAY_FIT
created with fit.bayes.

x Vector (of size N) of points evaluated at t = T + 1 (used when do.its = FALSE).

theta Vector (of size d) or matrix (of size M x d) of parameter estimates (not required
when using a fit object) where d must have the same length as the default pa-
rameters of the specification.

y Vector (of size T) of observations (not required when using a fit object).

log Boolean indicating if the log-density is returned. (Default: log = FALSE)

do.its Boolean indicating if the in-sample predictive is returned. (Default: do.its = FALSE)

Details

If a matrix of MCMC posterior draws estimates is given, the Bayesian Probability integral transform
is calculated. If do.its = FALSE, the points x are evaluated as t = T + 1 realizations and the
method uses the variance estimate at t = T + 1. If do.its = TRUE, y is evaluated using their
respective variance estimate at each time t.
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Value

A list of class MSGARCH_PRED containing three components:

• pred:
If do.its = FALSE: (Log-)Predictive of of the points x at t = T + 1 (vector of size N).
If do.its = TRUE: In-sample Predictive of y (vector of size T or matrix of size M x T).

• x:
If do.its = FALSE: Vector (of size N) of points evaluated at t = T + 1.
If do.its = TRUE: Vector (of size T) of observations.

• do.its: Orinigal user inputed do.its for reference.

The class MSGARCH_PRED contains the plot method only if do.its = FALSE.

Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model on the data with ML estimation using DEoptim intialization
set.seed(123)
fit = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = list(do.init = FALSE))

# run pred method in-sample
pred.its = MSGARCH::pred(object = fit, log = TRUE, do.its = TRUE)

sum(pred.its$pred, na.rm = TRUE)

# create mesh
x = seq(-3,3,0.01)

# run pred method on mesh at T + 1
pred = MSGARCH::pred(object = fit, x = x, log = TRUE, do.its = FALSE)

plot(pred)

Pstate Filtered state probabilities.

Description

Method returning the filtered probabilities of the states.

Usage

Pstate(object, theta, y)



22 risk

Arguments

object Model specification of class MSGARCH_SPEC created with create.spec or fit
object of type MSGARCH_MLE_FIT created with fit.mle or MSGARCH_BAY_FIT
created with fit.bayes.

theta Vector (of size d) or matrix (of size M x d) of parameter estimates (not required
when using a fit object) where d must have the same length as the default pa-
rameters of the specification.

y Vector (of size T) of observations (not required when using a fit object).

Details

If a matrix of parameter estimates is given, each parameter estimate (each row) is evaluated indi-
vidually.

Value

Filtered state probabilities of class MSGARCH_PSTATE (array of size (T + 1) x M x K). The class
MSGARCH_PSTATE contains the plot method.

Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model on the data with ML estimation
set.seed(123)
fit = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = list(do.init = FALSE))

# compute the filtered state probabilities
Pstate = MSGARCH::Pstate(object = fit)

plot(Pstate)

risk Value-at-Risk And Expected-shortfall.

Description

Method returning the Value-at-Risk and Expected-shortfall in-sample or at t = T + 1 based on the
predictive density.

Usage

risk(object, theta, y, level = c(0.95, 0.99), ES = TRUE, do.its = FALSE,
ctr = list(n.mesh = 500, tol = 1e-04, itermax = 5))
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Arguments

object Model specification of class MSGARCH_SPEC created with create.spec or fit
object of type MSGARCH_MLE_FIT created with fit.mle or MSGARCH_BAY_FIT
created with fit.bayes.

theta Vector (of size d) or matrix (of size M x d) of parameter estimates (not required
when using a fit object) where d must have the same length as the default pa-
rameters of the specification.

y Vector (of size T) of observations (not required when using a fit object).

level Vector (of size R) of Value-at-risk and Expected-shortfall levels.
(Default: level = c(0.95,0.99))

ES Boolean indicating if Expected-shortfall is also calculated. (Default: ES = TRUE)

do.its Boolean indicating if the in-sample risk estimators are returned. (Default: do.its = FALSE)

ctr List of control parameters for risk evaluation.

Details

If a matrix of MCMC posterior draws estimates is given, the Bayesian Value-at-Risk and Expected-
shortfall are calculated. If do.its = FALSE, x the risk estimator at t = T + 1, the method uses the
variance estimated at t = T + 1. If do.its = TRUE, the in-sample risk estimator are calculated.

Value

A list of class MSGARCH_RISK containing two or three components:

• VaR :
If do.its = FALSE: Value-at-Risk at t = T + 1 at the chosen levels (vector of size R).
If do.its = TRUE: In-sample Value-at-Risk at the chosen levels (Matrix of size T x R).

• ES :
If do.its = FALSE: Expected-shortfall at t = T + 1 at the chosen levels (vector of size R).
If do.its = TRUE: In-sample Expected-shortfall at the chosen levels (Matrix of size T x R).

• y : Vector (of size T) of observations.

The MSGARCH_RISK contains the plot method. The Bayesian risk estimator can take long time to
calculate depending on the size of the MCMC chain.

Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model on the data with ML estimation
set.seed(123)
fit = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = list(do.init = FALSE))

# compute the Value-at-Risk and Expected-shortfall
# Risk estimation in-sample
risk.its = MSGARCH::risk(object = fit, level = 0.95, ES = FALSE, do.its = TRUE)
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plot(risk.its)

# Risk estimation at T + 1
risk = MSGARCH::risk(object = fit, level = 0.95, ES = FALSE, do.its = FALSE)

sim Process simulation method.

Description

Method simulating a MSGARCH process.

Usage

sim(object, n, m, theta, burnin = 500)

Arguments

object Model specification of class MSGARCH_SPEC created with create.spec.

n Simulation length. (Default: n = 1000)

m Number of simulations. (Default: m = 1)

theta Vector (of size d) or matrix (of size M x d) of parameter estimates (not required
when using a fit object) where d must have the same length as the default pa-
rameters of the specification.

burnin Burnin period discarded (first simulation draws). (Default: burnin = 500)

Details

If a matrix of parameters estimates is given, each parameter estimates is evaluated individually and
m = M. The difference between sim and simahead is that sim starts the simulation a t = 0 creating
an entire new process while simahead starts the simulation at t = T + 1 taking in consideration all
the information available in the original time series y.

Value

A list of class MSGARCH_SIM containing two components.

• draws: Matrix (of size M x n) of simulated draws.

• state: Matrix (of size M x n) of simulated states.

The MSGARCH_SIM class contains the plot method.

Examples

## Not run:
require("MSGARCH")
# create model specification
spec = MSGARCH::create.spec()

# generate process
set.seed(123)
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sim = MSGARCH::sim(object = spec, n = 1000, m = 1, theta = spec$theta0, burnin = 500)

plot(sim)

## End(Not run)

simahead Step ahead simulation method.

Description

Method returning step ahead simulation up to time n.

Usage

simahead(object, n, m, theta, y)

Arguments

object Model specification of class MSGARCH_SPEC created with create.spec or fit
object of type MSGARCH_MLE_FIT created with fit.mle or MSGARCH_BAY_FIT
created with fit.bayes.

n Number of steps ahead time steps. (Default: n = 1)

m Number of simulations. (Default: m = 1)

theta Vector (of size d) or matrix (of size M x d) of parameter estimates (not required
when using a fit object) where d must have the same length as the default pa-
rameters of the specification.

y Vector (of size T) of observations (not required when using a fit object).

Details

If a matrix of parameters estimates is given, each parameter estimates is evaluated individually
and m = M. The MSGARCH_SIM class contains the plot method. The difference between sim and
simahead is that sim starts the simulation a t = 0 creating an entire new process while simahead
starts the simulation at t = T + 1 taking in consideration all the information available in the original
time series y.

Value

A list of class MSGARCH_SIM containing two components:

• draws: Matrix (of size m x n) of step ahead simulated draws.

• state: Matrix (of size m x n) of step ahead simulated states.

The MSGARCH_SIM class contains the plot method.
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Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model on the data with ML estimation
set.seed(123)
fit = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = list(do.init = FALSE))

# generate random draws
set.seed(123)
simahead = MSGARCH::simahead(object = fit, n = 30, m = 100)

plot(simahead)

sp500 Log return of the S&P 500 index closing Value

Description

The S&P 500 index closing value log return from 1998-01-01 to 2015-12-31 from Yahoo Finance
https://finance.yahoo.com/.

Usage

data("sp500")

Format

Matrix containing 4,529 observations.

Source

Yahoo Finance https://finance.yahoo.com/

transmat Transition Matrix.

Description

Method returning the transition matrix.

Usage

transmat(object, theta, n)

https://finance.yahoo.com/
https://finance.yahoo.com/
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Arguments

object Model specification of class MSGARCH_SPEC created with create.spec or fit
object of type MSGARCH_MLE_FIT created with fit.mle.

theta Vector (of size d) or matrix (of size M x d) of parameter estimates (not required
when using a fit object) where d must have the same length as the default pa-
rameters of the specification.

n Number of steps ahead. (Default: n = 1

Value

A matrix (of size K x K) in the case of a Markov-Switching model or a vector (of size K) in the case
of a Mixture model. The columns indicates the starting states while the rows indicates the transition
states.

Examples

require("MSGARCH")
# load data
data("sp500")
sp500 = sp500[1:1000]

# create model specification
spec = MSGARCH::create.spec()

# fit the model on the data with ML estimation
set.seed(123)
fit = MSGARCH::fit.mle(spec = spec, y = sp500, ctr = list(do.init = FALSE))

# Extract the transition matrix 10 steps ahead
transmat.mle = MSGARCH::transmat(fit, n = 10)

print(transmat.mle)

unc.vol Unconditional volatility of each regime.

Description

Method returning the unconditional volatility of the process in each state.

Usage

unc.vol(object, theta)

Arguments

object Model specification of class MSGARCH_SPEC created with create.spec or fit
object of type MSGARCH_MLE_FIT created with fit.mle or MSGARCH_BAY_FIT
created with fit.bayes.

theta Vector (of size d) or matrix (of size M x d) of parameter estimates (not required
when using a fit object) where d must have the same length as the default pa-
rameters of the specification.
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Details

If a matrix of parameter estimates (each row) is given, each parameter estimates is evaluated indi-
vidually.

Value

Unconditional volatility (vector of size K or matrix of size M x K) of each regime.

Examples

require("MSGARCH")
# create model specification
spec = MSGARCH::create.spec()

# compute the unconditional volatility in each regime
unc.vol = MSGARCH::unc.vol(object = spec, theta = spec$theta0)
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