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Abstract

Quantile regression methods are increasingly used to forecast tail risks and uncertainties

in macroeconomic outcomes. This paper reconsiders how to construct predictive densities

from quantile regressions. We compare a popular two-step approach, that fits a specific

parametric density to the quantile forecasts, with a nonparametric alternative that lets

the “data speak”. Simulation evidence, and an application revisiting growth-at-risk and

GDP density forecasts in the US, demonstrate the flexibility of the nonparametric ap-

proach when constructing density forecasts from both frequentist and Bayesian quantile

regressions. They identify its ability to unmask deviations from symmetrical and uni-

modal densities and show how this affects the macroeconomic narrative about US GDP

growth.

1 Introduction

Recent research has used quantile regression (QR) methods both to produce density now-

casts and forecasts of macroeconomic and financial variables and to assess tail risks, em-
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phasizing asymmetries in the distribution of (real) GDP growth.1 A commonly adopted

approach in this literature, following Adrian et al. (2019) [henceforth ABG], is to produce

the density forecasts in two-steps. At a first-step, the QRs are estimated. This means

that the underlying conditional density is defined only at the chosen quantiles (typically

four quantiles are chosen). As a result, at a second step, the skewed-t density function of

Azzalini & Capitanio (2003) is fitted to these quantile forecasts by minimizing the distance

(the `2 norm) between the (empirical) regression quantiles and the (theoretical) density-

implied quantiles. This second-step both smooths the estimated quantile functions and

provides a complete density forecast, albeit one whose form is now controlled by the class

of skewed-t density assumed. This second step, therefore, contrasts the nonparametric

nature of the first-step quantile regressions. Policy institutions, like the IMF, have also

adopted this two-step approach to monitor international macroeconomic risks, such as

Growth-at-Risk (GaR); see Prasad et al. (2019).

This paper re-considers the use of QRs when interests rests with the production and

subsequent evaluation of density forecasts, from which specific risk forecasts, such as GaR,

can always be extracted. The attraction of producing density forecasts rather than specific

point, quantile or interval forecasts is that, given the forecast user’s loss function, one can

readily extract from the density forecast the features of specific interest to the user. Such

a focus on the production of density forecasts is rare in the quantile regression literature

(with the notable exceptions listed above). This is despite considerable attention having

been paid to the production and evaluation of the quantile forecasts themselves (e.g., see

Komunjer (2013)).

Our paper proposes and then contrasts with the aforementioned two-step ABG method,

that has become so established, a simple nonparametric (strictly “semi-parametric”) ap-

proach to the production of density forecasts from QRs. Unlike ABG, this approach does

not superimpose a global density on specific quantile forecasts. Instead, the conditional

quantile forecasts from the first-step QRs are mapped directly to a conditional density,

only assuming local uniformity between the quantile forecasts. In an application to US

GDP growth, we find that use of this nonparametric approach matches or slightly im-

proves upon the accuracy of the ABG densities. It also supports the much-cited finding

of ABG that the left-tail of the conditional density of GDP growth moves with the tight-

ness of financial conditions. But the nonparametric approach delivers conditional forecast

densities with very different features than those when, following ABG, a skewed-t density

is assumed globally. In particular, linking to Adrian et al. (2021), we find that the very

1On the use of QR methods to produce density nowcasts and forecasts, see e.g., Gaglianone & Lima
(2012), Gaglianone & Lima (2014), Manzan & Zerom (2013), Manzan (2015), Korobilis (2017), Ferrara
et al. (2021), Chen et al. (2021) and Mitchell et al. (2021). On the more specific but connected issue of
the assessment of tail risks using QRs, see e.g., Giglio et al. (2016), Ghysels et al. (2018), Adrian et al.
(2019), Carriero et al. (2020b), Carriero et al. (2020a), Reichlin et al. (2020), Brownlees & Souza (2021)
and Figueres & Jarocinski (2020).
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same QRs used by ABG do, in fact, deliver multimodal GDP growth density forecasts.

This is notably so at times of recession, when conditioning on a popular index of financial

conditions. The evolution, over the business cycle, of multimodalities rather than asym-

metries then becomes the central macroeconomic narrative of the conditional predictive

distribution of GDP growth.

The plan of the remainder of this paper is as follows. Section 2 considers the construc-

tion of density forecasts from quantile regressions, estimated via frequentist or Bayesian

methods. It contrasts parametric and nonparametric methods for the production of the

density forecast. Section 3 presents Monte Carlo evidence on the relative efficacy of the

parametric and nonparametric approaches at fitting densities to distributions of various

underlying shapes. Section 4 revisits the GaR application of ABG and contrasts empiri-

cal results using the parametric and nonparametric approaches. Section 5 concludes. An

online appendix contains supplementary material.

2 Density forecasts from quantile regressions

Consider the QR relating the τ -th quantile of yt+h, the variable of interest (GDP growth

in our application), to xt, a d−dimensional vector of conditioning variables including an

intercept:

Qyt+h|xt(τ |xt) = x′tβτ , τ ∼ U(0, 1), (1)

with t = 1, ..., T and where h is the forecast horizon and U(.) is the uniform density. Note

that, following ABG, we focus on QR models with time-invariant parameters.2

The QR slope, βτ , is chosen to minimize the weighted absolute sum of errors:

β̂τ = arg min
βτ

T∑
t=1

(yt+h − x′tβτ )(τ − 1yt+h≤x′tβτ ), τ ∈ (0, 1), (2)

where 1(.) denotes an indicator function. A perceived attraction of QR is that the informa-

tional importance of xt for yt+h can vary by quantile and thereby accommodate situations

where conditioning variables have, for example, more or less informational content in the

tails of the density.

The quantile forecasts from (2), conditional on xt, are:

Q̂yt+h|xt(τ |xt) = x′tβ̂τ . (3)

Bayesian estimation of QRs has also gained attention recently. Koenker & Machado

(1999) established that likelihood-based inference using independently distributed asym-

2Recent research in macroeconomics has moved onto consider QR models with time-varying parameters
(e.g., see Korobilis et al. (2021)). The same issues, as discussed in this paper, arise when considering how
to construct density forecasts from these QR models.
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metric Laplace densities (ALD) is directly related to (2). Yu & Moyeed (2001) show

how exact Bayesian inference using Markov Chain Monte Carlo (MCMC) can proceed by

forming the likelihood function using the ALD; they emphasize the utility of the ALD,

irrespective of the original distribution of the data. And Kozumi & Kobayashi (2011) pro-

pose a mixture representation of the ALD, that renders the model conditionally Gaussian

facilitating estimation using more efficient MCMC methods. Unlike classical estimation

methods, Bayesian methods naturally accommodate parameter uncertainty when fore-

casting.

Quantile forecasts can be constructed from the Bayesian QR, as per (3), from the

posterior parameter distribution for βτ . For the r-th MCMC draw, β̂rτ , these quantile

forecasts are given as:

Q̂yt+h|xt(τ |xt)
r = x′tβ̂

r
τ . (4)

In empirical applications, quantile regressions are estimated at a finite number of τ ,

i.e., [τ1, ..., τk], where 0 < τ1 < τ2 < .... < τk < 1. ABG, in fact, consider just k = 4. This

means that the underlying conditional density is defined only at these k quantiles. To

estimate the full conditional h−step predictive density, f̂(yt+h|xt), we therefore need to

establish a mapping from the k quantile forecasts, as in (3) or (4):

{
Q̂yt+h|xt(τ1|xt), ..., Q̂yt+h|xt(τk|xt)

}
→ f̂(yt+h|xt),∀[x′t, yt+h]′ ∈ Rdim(x)+1, (5)

where, for notational ease, we denote these quantile forecasts Q̂yt+h|xt(τj|xt) = x′tβ̂τ ; i.e.,

we suppress dependence on the MCMC draw.

Below we set out two ways of establishing this mapping. We start with the parametric

approach of ABG. As discussed in the introduction, this approach is used widely in

macroeconomics, despite it contradicting the nonparametric flavor of the first-step QRs.

2.1 ABG’s parametric quantile-matching approach

To estimate the full continuous conditional density forecast of yt+h, from the k quantile

forecasts ABG, in effect, combine them by fitting the skewed-t density function of Azzalini

& Capitanio (2003) to the quantile forecasts, (3). They minimize the distance (the `2

norm) between the (empirical) regression quantiles and the (theoretical) density implied

quantiles:

arg
µ,σ,α,υ

min
∑
τ

(
Q̂yt+h|xt(τ |xt)− F̂

−1(τ ;µ, σ, α, υ)
)2
, (6)

where F is the CDF of the skewed-t PDF, f, given as:
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f(y;µ, σ, α, υ) =
2

σ
t

(
y − µ
σ

; υ

)
T

(
α
y − µ
σ

√
υ + 1

υ +
(
y−µ
σ

)2 ; υ + 1

)
, (7)

where t and T (.) respectively denote the PDF and CDF of the Student t-distribution,

where µ is a location parameter, σ is the scale, υ is the fatness, and α is the shape. When

α = 0, the skewed reduces to the Student t. When, in addition, υ =∞, (7) reduces to a

Gaussian density, with mean µ and standard deviation σ.

ABG focus on the exactly-identified case of matching the 0.05, 0.25, 0.75 and 0.95

quantiles. But, in principle, as ABG discuss in a footnote but do not explore empirically,

more quantiles could be used, allowing the four parameters of (7) to be over-identified.

Since the choice of these k = 4 quantiles is somewhat arbitrary, and may affect the shape

of the fitted density, below we also consider fitting the skewed-t density to more quantiles.

While ABG used (6) on quantile forecasts, (3), produced from a frequentist QR, others

have fitted the skewed-t-distribution to forecasts produced from a Bayesian QR. Ferrara

et al. (2021), for example, use (6) on the mean (across r = 1, ..., R MCMC draws) quantile

forecasts, (4).

2.2 Constructing the density forecast nonparametrically

Rather than assume a parametric function for f̂(yt+h|xt), following Parzen (1979) and

Koenker (2005), one can back-out the conditional distribution directly from the condi-

tional quantile function via the integral transforms:

F̂ (yt+h|xt) =

∫ 1

0

1{x′tβ̂τ ≤ yt+h}dτ. (8)

By considering all τ ∈ (0, 1), one can approximate the true conditional quantile func-

tion arbitrarily well, when the true density is a smooth conditional density (Koenker

(2005), p53).

In practice, we follow Koenker & Zhao (1996) and adopt a simple simulation-based

approach, instead of relying on numerical integration. A random draw from the h-step-

ahead forecast distribution is given by:

ŷt+h = Q̂yt+h|xt(U |xt)
r, (9)

where U is a uniformly distributed random variable on [0, 1] as in Koenker & Zhao (1996).

Repeating across many random draws approximates F̂ (yt+h|xt).
To operationalize, with a finite k, we smooth/interpolate across adjacent quantile

forecasts by taking a first-order Taylor expansion of the CDF, (8), between the j-th and

j + 1-th quantiles:
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F̂k(yt+h|xt) = τj +
τj+1 − τj

x′tβ̂τj+1
− x′tβ̂τj

(yt+h − x′tβ̂τj) (10)

= τj + F ′(y∗t+h,j|xt)(yt+h − x′tβ̂τj), (11)

for y∗t+h,j ∈
(
x′tβ̂τj , yt+h

)
⊂
(
x′tβ̂τj , x

′
tβ̂τj+1

)
. Assuming that the interval between adjacent

quantiles is relatively small, the implied density function is approximately linear within

the interval. Figure 1 provides an illustration, plotting the approximate CDF in yellow and

the true CDF in blue. This illustration intuitively points to higher values of k delivering

better approximations; i.e., the marginal benefits to the first-order approximation decline

as k increases, an issue we explore below in the simulations and in the application. Unlike

ABG, this approach does not superimpose a global (parametric, e.g., skewed-t) density

on specific quantile forecasts. Instead, it assumes local uniformity between the k quantile

forecasts. Hence it is best seen as a “semi-parametric” method, although for convenience

we continue to refer to the method as nonparametric.

Algorithm 1 summarizes the mechanics of how the density forecast is formed non-

parametrically from the QRs. Whether the QRs are estimated by frequentist or Bayesian

methods, the empirical density forecast is constructed from the sample:[
yt+h,1,yt+h,2, ...,yt+h,k,yt+h,k+1

]
. This vector can be used directly by the macroeconomist

or a kernel could be fitted.3

We note four features of Algorithm 1:

1. Since:

Prob(F−1(τj|xt) ≤ yt+h < F−1(τj+1|xt)) = τj+1 − τj, (12)

to take a sample of length N from the conditional distribution F (·|X = xt), requires

(τj+1 − τj)N samples to be taken between:(
x′tβ̂τj , x

′
tβ̂τj+1

)
. (13)

2. The quantile forecasts are re-arranged as necessary (following Chernozhukov et al.

(2010)) to avoid quantile crossing.

3. The “extreme” quantiles are approximated by a specified CDF, here assumed to be

3See Kruger et al. (2021) for discussion of the pros and cons of alternative methods for estimating the
distribution from the underlying simulation output. Kruger et al. (2021)’s analysis demonstrates that
the empirical CDF-based approximation works well in many contexts.
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the Gaussian CDF, Φ, although any parametric CDF could be used.4 This implies:

Φ(x′tβτ1 , µ1, σ1) = τ1,Φ(x′tβτ2 , µ1, σ1) = τ2 (14)

Φ(x′tβτk−1
, µ2, σ2) = τk−1,Φ(x′tβτk , µ2, σ2) = τk, (15)

where we solve for [µ1, µ2, σ1, σ2] to satisfy these 4 equations.

4. Algorithm 1 consistently estimates the true conditional distribution F (yt+h|xt) as

T, k →∞. This is understood by noting that there are two convergence aspects to

consider in Algorithm 1: (a) statistical convergence, T →∞, and (b), convergence

of the approximate density to the true density as the number of quantile levels,

k →∞:

(a) The consistency of the QR estimates β̂τj as T → ∞ (see Chernozhukov et al.

(2010) and Koenker (2005)), at the chosen quantile levels, j, implies that the

approximate density F̂k → Fk. That is, referring again to Figure 1, the ap-

proximate density converges to the piecewise-linear function (the yellow line)

approximating the true CDF (the blue line). For τ ∈ {τ1, ..., τk}:

Fk(xβτ |x) = F (xβτ |x), (16)

i.e., the vertex of the function equals the true density at the finite sequence of

quantile levels (and the blue and yellow lines equal each other).

(b) As k → ∞, the piecewise-linear CDF (the yellow line in Figure 1) converges

to the true density (the blue line in Figure 1) between these quantile levels.

This is seen as follows. Given a smoothness assumption for the true density,

by Taylor’s theorem, rewrite the true density as:

F (yt+h|xt) = τj + f(y∗t+h,1|xt)(yt+h − xtβτj), (17)

for any yt+h ∈
(
xtβτj , xtβτj+1

)
and some y∗t+h,1 ∈

(
xtβτj , yt+h

)
. Then, by the

mean value theorem, the approximate k quantile level density:

Fk(yt+h|xt) = τj +
τj+1 − τj

x′tβτj+1
− x′tβτj

(yt+h − xtβτj) (18)

= τj + f(y∗t+h,2|xt)(yt+h − xtβτj), (19)

for y∗t+h,2 ∈
(
xtβτj , xtβτj+1

)
. Comparing (17) and (19), the only difference is

4In our simulations and the application, we define “extreme” as those quantiles beyond 0.05 and 0.95
or 0.01 and 0.99. Following Chernozhukov (2005) extremal methods could be used instead.
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Figure 1: Illustrative comparison of the true CDF against Algorithm 1 (Fk) and the CDF
assuming uniform (equal) weights between adjacent quantiles

between y∗t+h,1 and y∗t+h,2. Yet, note that:

xtβτj ≤ y∗t+h,2 ≤ xtβτj+1
(20)

xtβτj ≤ y∗t+h,1 ≤ yt+h ≤ xtβτj+1
. (21)

Further assume that the conditional quantiles are linear in the regressors, uni-

formly across all τ. Then, we can let k → ∞. As k → ∞, τj+1 − τj → 0, and

the intervals in (20) and (21) converge by the sandwich theorem such that:

y∗t+h,1 = y∗t+h,2.

Hence:

lim
k→∞

Fk(yt+h|xt) = F (yt+h|xt).

In the simulations and empirical application below we consider how to choose

k. We suggest, in effect, to choose k empirically to maximize forecasting per-

formance.

Algorithm 1, where the proposed density is:

F̂k(yt+h|xt) = τj +
τj+1 − τj

x′tβ̂τj+1
− x′tβ̂τj

(yt+h − x′tβ̂τj), (22)
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when yt+h ∈
(
x′tβ̂τj , x

′
tβ̂τj+1

)
, can be contrasted with an alternative of using equal weights

between adjacent quantiles:

F̂EW (yt+h|xt) =


τj yt+h ∈ (x′tβ̂τj , x

′
tβ̂τj+1

)

0 yt+h < x′tβ̂τ1

1 yt+h ≥ x′tβ̂τk

, (23)

which amounts to a zero-order approximation of the CDF between quantiles j and j+1. We

emphasize that this is, in effect, the approach used by Korobilis (2017) to produce density

forecasts from Bayesian QRs. This approach involves collecting together the r = 1, ..., R

MCMC draws of the quantile nowcast Q̂yT+h
(τ |xt)r across τ ∈ [0.05, 0.10, ..., 0.90, 0.95]

and then constructing the full posterior density nowcast from this stacked vector - using

a kernel to smooth.

Figure 1 also illustrates how equal weights differ from Algorithm 1. It shows how equal

weights intuitively provide a worse approximation to the true CDF. Note that, given the

estimated quantile levels, the straight lines that Algorithm 1 imposes between adjacent

quantiles provide a piecewise-linear approximation to the CDF. Unlike the piecewise-

constant function implied by equal weights, the piecewise-linear approximation benefits

from smoothness in the estimated CDF. Statistics, like the conditional mean, can be

obtained via numerical integration of:∫
xtf̂(yt+h|xt)dxt, (24)

where:

f̂(yt+h|xt) =


φ(yt+h|µ̂1, σ̂1) yt+h ≤ x′tβ̂τ1

τj+1−τj
x′tβ̂τj+1−x

′
tβ̂τj

x′tβ̂τj < yt+h ≤ x′tβ̂τj+1

φ(yt+h|µ̂2, σ̂2) yt+h > x′tβ̂τk .

(25)

Algorithm 1, instead, relies on samples from the conditional distribution f̂(yt+h|xt),
which lets us readily construct the whole density.

3 Simulation Results

To evaluate the performance of the nonparametric approach to construction of the predic-

tive density from QRs, relative to extant alternatives including the approach of ABG, we

conduct a set of Monte Carlo experiments. These let us assess the ability of the different

approaches to uncover a range of distributional forms. We consider five data-generating-

processes (DGPs) that yield densities for {yt}Tt=1 that are:

9



Algorithm 1 A local-linear algorithm to construct density forecasts from quantile re-
gressions

• Estimate the QR at τj (j = 1, ..., k).

• Denote the QR estimates, β̂τj , where for Bayesian estimation β̂τj = {β̂1
τj
, ..., β̂Rτj} is a

d×R dimensional matrix, where r = 1, ..., R, defined by stacking across the MCMC
draws. In the frequentist case, R = 1. Define:

Qt =
[
(xtβ̂τ1)

′, (xtβ̂τ2), ..., (xtβ̂τk)
]
∈ RR×k.

• Obtain Q̃t by sorting Qt based on the elements in the second column.

• for j = 2 : k

– Obtain the sub-sample given random variables uniformly distributed on
[Q̃t,j−1, Q̃t,j]:

yt+h,j = Q̃t,j−11
′
(τj−τj−1)N

+ diag(Q̃t,j − Q̃t,j−1)Uj

where Q̃t,j denotes the jth column of Q̃t and Uj is a matrix of dimension
R×(τj−τj−1)N , with each element drawn from a standard uniform distribution
similar to (9).

• end

• Fit a Gaussian (or some other) distribution via β̂τ1 and β̂τ2 , and sample from the
lower tail F (yt+h|xt) < τ1 to obtain yt+h,1

• Fit a Gaussian (or some other) distribution via βτk−1n and βτk,n, and sample from
the upper tail F (yt+h|xt) > τk to obtain yt+h,k+1

Finally, create the stacked vector of forecasts:
[
yt+h,1,yt+h,2, ...,yt+h,k,yt+h,k+1

]
.
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1. (DGP1) Gaussian: N(0, 1).

2. (DGP2) Negatively skewed: f(y;µ = 1, σ = 2, α = −0.5, υ = 10), where f(.) is as

defined in (7).

3. (DGP3) High kurtosis: f(y;µ = 1, σ = 1, α = 1, υ = 5).

4. (DGP4) Bimodal (mixture of Gaussian) : 1/3N(0, .04) + 2/3N(1, .04).

5. (DGP5) Trimodal (mixture of Gaussian): 1/6N(0, 0.2)+1/3N(1, 0.2)+1/2N(2, 0.2).

For {yt}Tt=1 samples of size T = 100 and T = 1000 drawn from each of these five DGPs

(see Figure 2 for an illustrative visualization), we then estimate five alternative densities

and compare their fit against the (true) DGP density. In all cases, when estimating the

QR, we set xt = 1, i.e., we consider an intercept only.

The five densities we fit to the {yt}Tt=1 samples are:

1. NP(freq): estimate the QRs (where k = 19, such that τ ∈ [0.05, 0.10, ..., 0.90, 0.95])

using frequentist methods, (2), and then construct the density nonparametrically

via Algorithm 1. We also experiment, as summarized below, with k = 4 where

τ ∈ [0.05, 0.25, 0.75, 0.95] (as in ABG) and k = 99 where τ ∈ [0.01, 0.02, ..., 0.99].

2. NP(B): estimate the QRs (where k = 19, such that τ ∈ [0.05, 0.10, ..., 0.90, 0.95])

using Bayesian methods and then construct the density nonparametrically via Algo-

rithm 1. At the first-stage, the Bayesian QR is estimated using a standard normal

uninformative prior for the q−vector of βτ coefficients, centered on a zero mean:

βτ ∼ N(0,Vβ), (26)

whereVβ = 10Iq.

3. EW(B): estimate the QRs (where k = 19, such that τ ∈ [0.05, 0.10, ..., 0.90, 0.95])

using Bayesian methods (as in NP(B)) but then construct the density using equal-

weights, (23).

4. ABG: follow ABG (using their replication material) and estimate the QRs (where

k = 4, such that τ ∈ [0.05, 0.25, 0.75, 0.95]) using frequentist methods and then

construct the density parametrically via (7).5

5We note that in ABG’s Matlab replication materials (available at
http://doi.org/10.3886/E113169V1), they approximate integrals with discrete sums when matching
the quantile forecasts to the skewed-t density. Specifically, looking at ABG’s Step2match.m file (line
100), we see that they evaluate the skewed-t density only over a grid from -15 to 10. Instead, we use an
exact analytical solution. In the empirical section below we return to this issue, showing its empirical
importance.

11



5. ABG kernel: as a non-QR benchmark, follow ABG and nonparametrically estimate

a kernel density.6

For all the Bayesian models, we estimate with 20,000 MCMC draws with a burn-in of

10,000 draws. With regards to the Bayesian QR and Algorithm 1, we save every 10th

draw from the 10,000 draws. This yields 1000 draws (across k quantiles) which are then

inputted by draw into Algorithm 1 where N = 100. This delivers a vector of 100,000

draws (1000*100) from each predictive forecast density.

Tables 1 and 2, for T = 100 and T = 1000, respectively, report the mean squared error

(across R = 100 parallelized chains) of the first four moments of the fitted densities rela-

tive to the true (DGP) density and the average Kullback-Leibler (KL) distance between

the fitted and true densities. Looking at the KL distance first, as a measure of overall

density fit, we see the nonparametric (NP) estimators, whether NP(freq) or NP(B), con-

sistently deliver the best-fitting densities irrespective of the shape of the true density.7

As anticipated, ABG’s parametric approach is competitive only when the true density is

unimodal. The equal-weighted Bayesian approach, EW(B), also performs very poorly for

multimodal densities, and in fact under-performs relative to ABG for the three unimodal

DGPs. The benchmark kernel density, like the NP estimators, can also accommodate

multimodalities. However, the kernel density does not deliver as good-fitting densities as

the NP approaches, in particular for the smaller sample size of T = 100.

Turning to the accuracy of the first four moments, as judged by the Mean Squared

Error (MSE) between the respective moment of the fitted and true densities, we observe

a similar picture. The NP estimators dominate both ABG, EW(B) and kernel. We also

note how explosive estimation, for some Monte Carlo replications, pushes up the MSE

estimates in some instances, especially for EW(B) and ABG. When estimates of υ < 4,

not all of the first four moments of the skewed-t density are defined.

In sum, the Monte Carlo evidence confirms that the choice of how to fit a density to

quantile forecasts matters. While ABG’s parametric assumption may work well, unsur-

prisingly it will only do so for true densities that are unimodal. Instead, it is relatively

simple to let the “data speak”, as they do when estimating the QRs in the first-place, and

use nonparametric approaches as detailed in Algorithm 1 to construct the forecast density

6See equation (8) of ABG for details of the specific kernel density estimator employed.
7To assess the role of k in explaining this result, given k = 4 in ABG but k = 19 in NP(freq), we

experimented with NP(freq) when k = 4 and k = 99; and we experimented with ABG when k was
increased from its maintained value of 4. As Table 4 in the online appendix shows, decreasing k to k = 4
markedly lessens the accuracy of NP(freq); and increasing k to k = 99 also worsens accuracy. While we
might expect increases in k to improve accuracy for NP(freq), as the local uniformity assumption becomes
weaker, parameter estimation errors increase for more extreme quantiles. The objective function of the
standard QR estimator is not smooth, and the QR estimates can experience jumps. Future work might
consider the benefits of producing the density forecasts having first smoothed the objective function, e.g.
as in Fernandes et al. (2021). Increasing k for NP(freq), well into the 5% tails as is the case when k = 99,
was therefore found to deliver noisier estimates of the underlying conditional density. By contrast, due
to its parametric assumption, increasing k did little to affect results for ABG.
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from the quantile forecasts. While these simulations are, of course, just illustrative, they

do indicate how the nonparametric approach of Algorithm 1 can flexibly accommodate a

greater variety of distributional shapes than ABG, even for modest sample sizes.

Gaussian Negative Skewness High Kurtosis

Bimodal Trimodal

Figure 2: Simulated draws from the 5 DGP densities (T = 1000)
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Table 1: Average Mean Squared Error and Kullback-Leibler (KL) distance for T = 100

Models Mean Variance Skewness Kurtosis KL

DGP1: Unimodal (Gaussian)

NP(freq) 0.01 0.03 0.12 0.40 0.02

NP(B) 0.01 0.03 0.12 0.60 0.06

EW(B) 0.01 0.48 0.01 0.05 0.06

ABG 0.01 0.05 Inf Inf 0.02

ABG Kernel 0.01 0.07 0.04 0.10 0.02

DGP2: Unimodal (Negative Skewness)

NP(freq) 0.05 0.73 0.14 1.51 0.02

NP(B) 0.05 0.70 0.18 1.02 0.05

EW(B) 0.04 7.32 0.03 0.61 0.06

ABG 0.05 Inf Inf Inf 0.03

ABG Kernel 0.05 1.32 0.10 0.82 0.04

DGP3: Unimodal (High Kurtosis )

NP(freq) 0.01 0.12 1.11 80.41 0.02

NP(B) 0.01 0.08 0.46 49.13 0.06

EW(B) 0.01 0.34 0.82 72.22 0.07

ABG 0.01 Inf Inf Inf 0.03

ABG Kernel 0.01 0.30 0.66 59.62 0.12

DGP4: Bimodal

NP(freq) 0.00 0.00 0.01 0.04 0.03

NP(B) 0.00 0.00 0.01 0.06 0.05

EW(B) 0.00 0.05 0.04 1.99 0.25

ABG 0.00 0.00 0.30 6.14 0.30

ABG Kernel 0.00 0.00 0.01 0.11 0.11

DGP5: Trimodal

NP(freq) 0.00 0.00 0.01 0.04 0.05

NP(B) 0.00 0.00 0.01 0.07 0.06

EW(B) 0.00 0.23 0.07 1.23 0.32

ABG 0.00 0.01 0.31 5.20 0.26

ABG Kernel 0.00 0.01 0.02 0.07 0.21

Notes: Inf denotes infinity. NP(freq) uses k = 4. The 5 estimators and 5 DGPs are defined in
Section 3.
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Table 2: Average Mean Squared Error and Kullback-Leibler (KL) distance for T = 1000

Models Mean Variance Skewness Kurtosis KL

DGP1: Unimodal (Gaussian)

NP(freq) 0.00 0.01 0.06 0.15 0.00

NP(B) 0.00 0.00 0.01 0.03 0.01

EW(B) 0.00 0.52 0.00 0.04 0.06

ABG 0.00 0.00 0.02 0.21 0.00

ABG Kernel 0.00 0.01 0.01 0.02 0.01

DGP2: Unimodal (Negative Skewness)

NP(freq) 0.01 0.31 0.06 1.04 0.00

NP(B) 0.01 0.09 0.02 0.56 0.01

EW(B) 0.00 7.37 0.02 0.63 0.06

ABG 0.00 0.15 0.04 Inf 0.00

ABG Kernel 0.00 0.18 0.02 0.30 0.01

DGP3: Unimodal (High Kurtosis )

NP(freq) 0.00 0.10 0.99 82.64 0.00

NP(B) 0.00 0.03 0.28 60.95 0.02

EW(B) 0.00 0.28 0.79 72.63 0.07

ABG 0.00 0.03 Inf Inf 0.00

ABG Kernel 0.00 0.03 0.60 142.25 0.05

DGP4: Bimodal

NP(freq) 0.00 0.00 0.00 0.00 0.00

NP(B) 0.00 0.00 0.00 0.00 0.01

EW(B) 0.00 0.05 0.04 2.02 0.26

ABG 0.00 0.00 0.32 6.23 0.31

ABG Kernel 0.00 0.00 0.00 0.02 0.03

DGP5: Trimodal

NP(freq) 0.00 0.00 0.00 0.01 0.03

NP(B) 0.00 0.00 0.00 0.01 0.02

EW(B) 0.00 0.27 0.07 1.22 0.33

ABG 0.00 0.01 0.30 5.09 0.25

ABG Kernel 0.00 0.00 0.00 0.01 0.09
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4 Empirical Results: Revisiting the Growth-at-Risk

Application of ABG

ABG established the empirical utility of quantile regressions for modeling the conditional

density of US GDP growth. They found that deteriorating financial conditions, as cap-

tured by the Chicago Fed’s Net Financial Conditions Index (NFCI), have an asymmetric

effect on GDP growth.8 In particular, they link GDP growth tail risks to poor financial

conditions. Recessions are associated with left-skewed conditional forecast densities. Car-

riero et al. (2020a) challenge this view, noting that ABG’s empirical finding that downside

risk varies more than upside risk could equally well be explained by symmetric conditional

forecast densities but asymmetric unconditional forecast densities. These could be pro-

duced, for example, by Bayesian VAR models with stochastic volatility. Caldara et al.

(2020) similarly suggest use of a parametric modeling framework that both rationalizes

the empirical findings of ABG but maintains use of symmetric conditional densities. They

capture nonlinear effects by a Markov-switching model, in which the transition probabil-

ities depend, inter alia, on financial conditions. Adrian et al. (2021) also jettison use

of QR and instead use kernel-based estimators to support their finding that the forecast

density of GDP growth is approximately Gaussian and unimodal during normal periods,

but becomes multimodal during periods of tight financial conditions. They also make the

theoretical case for multimodality, explaining how it arises in macrofinancial intermediary

models with occasionally binding financial constraints.

Given the degree to which ABG’s empirical findings, based on their parametric quantile-

matching approach, have influenced the subsequent literature, as we have just selectively

reviewed, we emphasize the importance of letting the “data speak” about the nature of

the conditional density forecast for GDP growth when mapping the quantile forecasts to

the density forecasts. Accordingly, we revisit ABG’s application. But we compare their

skewed-t conditional density forecasts, that assume unimodality but allow for asymmetry,

with those conditional density forecasts formed when we make no such assumption and,

via Algorithm 1, better let the data inform this mapping.

Specifically, to facilitate comparison with ABG’s parametric approach to constructing

forecast densities from QRs, we use their data, sample-periods and preferred models.

Specifically, we estimate QR models relating GDP growth to both lagged GDP growth and

NFCI.9 This then lets us produce, via the aforementioned parametric and nonparametric

8The NFCI aggregates a large set of variables capturing credit quality, risk, and leverage.
9A subsequent literature has also used QRs to model GaR and construct GDP growth density forecasts.

But it has examined the benefits of disaggregating the Chicago Fed’s NFCI and/or considered additional
indicators; e.g., see Plagborg-Moller et al. (2020), Reichlin et al. (2020) and Brownlees & Souza (2021).
Given the importance of the original modeling strategy in shaping the ongoing research agenda, as
summarized in our introduction, we return to ABG’s model space and consider NFCI alone. We expect
that adding in extra variables, and allowing for possible additional nonlinearities, will distinguish our
approach further from ABG. Given their skewed-t assumption, ABG’s densities cannot accommodate the
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approaches, one-quarter-ahead and one-year-ahead forecast densities for GDP growth

conditional firstly on both lagged GDP growth and NFCI, and secondly conditonal on

just lagged GDP growth. Thereby, we isolate the role that NFCI plays in driving results.

We re-assess ABG’s claim that financial conditions are critical when density forecasting

GDP growth in the US. Our focus, in common with much of the literature, is assessing the

in-sample fit of the conditional densities. Thus we provide guidance on the importance

of consideration of how to fit a density to the quantile forecasts. But we do provide some

out-of-sample evaluation evidence too. Although the latter arguably tells us more about

the instabilities faced out-of-sample (see Rossi (2021)), than the relative merits of different

ways of constructing predictive densities from QRs. Nevertheless, in anticipation of the

known benefits of shrinkage when forecasting, out-of-sample we do consider a variant of

NP(B) that imposes a more informative prior. That is, we estimate Bayesian QRs with

Minnesota priors. We follow Carriero et al. (2020b) and set Vi, the i-diagonal elements of

Vβ, as follows:

Vi =


λ1λ2

σGDP
σj

λ1
lλ3

1000σGDP

for the coefficients other than the lag l of GDP,

for the coefficients on the lag l of GDP,

for the intercept,

(27)

where σGDP and σj are the standard deviations from an AR(4) model for GDP growth

and the j-th regressor (other than GDP growth), estimated with data available at the

forecast origin. We follow Carriero et al. (2020b) and set λ1 = λ2 = 0.2 and λ3 = 1. In

terms of the in-sample fit, the prior variance on the coefficient on the lag of GDP is 0.2 for

both the one-quarter and one-year-ahead forecasts. On the other hand, the prior variance

on the coefficient for NFCI differs. One-quarter-ahead, its prior variance is 0.25, while

one-year-ahead it is 0.08. Let NP(BM) denote the forecast densities produced using this

Minnesota prior and Algorithm 1.

Given this paper’s emphasis on construction of the entire predictive density rather

than just estimating GaR, we focus on assessing the overall fit of the competing forecast

densities using the probability integral transforms (PITS), i.e., the CDF of the forecast

evaluated at the subsequent realization of GDP growth. For correctly calibrated fore-

cast densities (see Diebold et al. (1998) and Mitchell & Wallis (2011)), these PITS, at

the minimum, should be uniformly distributed. As shown by Diebold et al. (1998), cor-

rectly calibrated forecast densities minimize specific loss functions. To supplement the

PITS-based tests of calibration, and facilitate cross-model comparison, we also report

logarithmic predictive scores and Cumulative Ranked Probability Scores (CRPS). The

CRPS is a popular density forecast-based scoring rule that offers greater robustness to

outliers than the logarithmic score used by ABG; see Gneiting & Raftery (2007).

likely multimodalities associated with nonlinearity.
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Figures 3 and 4 plot the cumulated PITS, respectively, for the one-quarter-ahead and

one-year-ahead forecast densities produced using the 5 models of Section 3 plus NP(BM).

These models consider both NFCI and lagged GDP growth as conditioning information,

as favored by ABG. We also plot the PITS dropping NFCI from the QR, to isolate

the importance of conditioning on financial conditions when density forecasting GDP

growth.10 Looking at these cumulated PITS plots across these 2 figures, it is apparent

that NP(freq) appears to deliver the best-calibrated forecast densities. Its cumulated PITS

are closest to the 45 degree line. Interestingly, the densities are well-calibrated at a 95%

significance level, according to the PITS test of Rossi & Sekhposyan (2019), irrespective

of whether NFCI is included in the QR.11 The ABG densities perform second-best, a very

close second to NP(freq), but with a few more little deviations from the 45 degree line.

While based on the same frequentist QR as ABG, this indicates that fitting the skewed-t

density to these same quantile forecasts is not as beneficial as using Algorithm 1. To

investigate whether it is the higher value of k = 19 in NP(freq), relative to ABG (where

k = 4), that is explaining this result rather than use of Algorithm 1, we did produce

predictive densities from ABG assuming k = 19 (see Figure 16 in the online appendix).

As in the Monte Carlo experiments, these alternative ABG densities are found to be

perform similarly to those when k = 4. Thus we conclude that it is use of Algorithm 1,

rather than a different sized k, that yields the forecasting gains.

Algorithm 1 does not work quite as well (in-sample) when when we estimate the QRs

by Bayesian methods, whether with an uninformative or more informative prior. This

tells us more about the relative merits of Bayesian versus frequentist QR. EW(B), in

contrast, understates forecast uncertainty, as evidenced by S-shaped cumulated PITS.

10We emphasize how when constructing the ABG densities we use ABG’s replication code. Therefore,
as discussed in Section 3, we approximate integrals with discrete sums. We return later to the empirical
applications of this.

11Figure 15 in the online appendix again shows how the choice of k in NP(freq) matters. From the
S-shaped nature of the cumulated PITS, we can infer that the density forecast is too narrow at k = 4.
Calibration is better at k = 99, but worse than at k = 19 (as shown in Figures 3 and 4), with evidence
from the cumulated PITS that the density forecast becomes too wide when k = 99.
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Figure 3: CDF of the in-sample PITS (one-quarter-ahead forecasts, 1973Q1-2015Q3) from
the 6 density forecasts with and without NFCI. Note: the figures show the empirical CDF

of the PITS (blue line) from the QR models with NFCI (and lagged GDP), the empirical CDF

of the PITS (dashed red line) from the QR models without NFCI, plus the CDF of the PITS

under the null hypothesis of correct calibration (the 45 degree line) and the 5% critical value

bands of the Rossi and Sekhposyan (2019) PITS test
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Figure 4: CDF of the in-sample PITS (one-year-ahead forecasts, 1974Q1-2015Q4) from
the 6 density forecasts with and without NFCI. Note: the figures show the empirical CDF

of the PITS (blue line) from the QR models with NFCI and lagged GDP, the empirical CDF

of the PITS (dashed red line) from the QR models without NFCI, plus the CDF of the PITS

under the null hypothesis of correct calibration (the 45 degree line) and the 5% critical value

bands of the Rossi and Sekhposyan (2019) PITS test
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Figure 5: In-sample plots of the expected shortfall and expected longrise at τ = 0.05
using ABG and NP(freq), from QRs with NFCI and lagged GDP
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Figure 6: In-sample plots of the four moments of the ABG and NP(freq) forecast densities
(one-quarter-ahead), from QRs with NFCI and lagged GDP
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Figure 7: In-sample plots of the four moments of the ABG and NP(freq) forecast densities
(one-year-ahead), from QRs with NFCI and lagged GDP

Figure 5 confirms that use of our preferred density, NP(freq), when conditioned on

both NFCI and lagged GDP growth, does not change the central narrative of ABG: the

left-tail of the conditional density of GDP growth moves with the tightness of financial

conditions.12 And the right-tail is relatively invariant. Figure 5 evidences this by plotting,

over time, the expected shortfall and longrise estimates from both ABG and NP(freq).

Expected shortfall (SFt+h) and longrise (LRt+h) summarize downside and upside risk,

respectively. They measure the total probability mass that the conditional distribution

assigns to the left- and right-tails of the distribution:

SFt+h =
1

π

∫ π

0

F̂yt+h|xt(τ |xt)dτ ; (28)

LRt+h =
1

π

∫ 1

1−π
F̂yt+h|xt(τ |xt)dτ. (29)

It is seen from Figure 5 that the expected shortfall and longrise estimates from ABG

and NP(freq) track each other very closely. Expected shortfall is far more volatile than

expected longrise, as the narrative of ABG emphasizes.

However, despite this similarity, when we look more deeply at the densities underlying

these estimates we start to appreciate that the choice of how to construct the density

from the quantile forecasts does still matter. It can reveal further features of economic

interest. Figures 6 and 7 show this by plotting over time, for the one-quarter-ahead

and one-year-ahead forecasts, respectively, the first 4 moments of the ABG and NP(freq)

12This “stylized fact” has been confirmed using alternative modeling approaches to QR, such as the
parametric time-varying skew-t model of Delle-Monache et al. (2021).
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densities. While the first two moments from ABG and NP(freq) are similar, the third and

especially fourth moments differ, albeit they share some commonalities. In particular, we

note how the evidence for or against skewness in GDP growth varies over time. This is

consistent with Carriero et al. (2020a) who find, using alternative tests, weak evidence for

skewness. Figure 6, in particular, shows that NP(freq) points to less negative skewness

during the period of the global financial crisis.13 This disagreement between ABG and

NP(freq) is also consistent with the finding in Plagborg-Moller et al. (2020) that only the

lower moments of the GDP growth conditional density are well-estimated.14

Next we provide some illustrative in-sample plots of our predictive densities. In Figure

8 we zoom in on a relatively stable period: 2005. Then, in Figure 9, we look at 2008,

during the global financial crisis, a period also emphasized in ABG and Adrian et al.

(2021). We focus on the one-quarter-ahead in-sample densities, with the analogous one-

year-ahead and out-of-sample plots in the online appendix.15 Confirming the findings of

Adrian et al. (2021) who use kernel methods, clear evidence of multimodality emerges at

the time of the global financial crisis when we use Algorithm 1 to construct the density

forecast from the QR. If, as in ABG, we assume a skewed-t density we obscure this impor-

tant macroeconomic feature. Instead, we would simply infer more evidence for a skewed

density. The evidence of multimodality during the global financial crisis, gleaned from

NP(freq), is somewhat more muted when we look at the out-of-sample density forecasts

as plotted in the online appendix. But, as shown by Figure 10, when the Hartigan & Har-

tigan (1985) test is used, rejections of unimodality are far greater when we do condition

on NFCI. These rejections are also especially prounounced during NBER recessionary

periods, again confirming the finding of Adrian et al. (2021).

13This is consistent with modest falls in the degree of asymmetry when NP(freq) rather than ABG is
used in Figure 5. That is, while following the same general patterns, expected shortfall and longrise are
more volatile, over time, when ABG rather than NP(freq) is consulted.

14Figures 13 and 14 in the online appendix indicate how ABG’s coding choice to assess the skewed-t
density over a finite grid is important. If, instead, we assess the skewed-t density analytically, instead of
relying on ABG’s approximation, we observe far more extreme estimates for the higher moments.

15Figures 19 through 24 in the online appendix qualitatively confirm the impression from Figures 8
and 9.
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Figure 8: GDP growth density forecasts conditional on NFCI and lagged GDP for 2005
made one-quarter-ahead (in-sample)
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Figure 9: GDP growth density forecasts conditional on NFCI and lagged GDP for 2008
made one-quarter-ahead (in-sample)
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Panel A: NFCI and GDP Panel B: NFCI and GDP
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Notes: Panel A are the p-values from the Hartigans’ unimodality test (one-quarter-ahead) for the NP(freq)
in-sample GDP growth density forecasts conditional on NFCI and lagged GDP. Panel B are the p-values
from the Hartigans’ unimodality test over time (one-year-ahead) for the NP(freq) in-sample GDP growth
density forecasts conditional on NFCI and lagged GDP. Panel C are the p-values from the Hartigans’
unimodality test over time (one-quarter-ahead) for the NP(freq) in-sample GDP growth density forecasts
conditional on only lagged GDP. Panel D are the p-values from the Hartigans’ unimodality test over time
(one-year-ahead) for the NP(freq) in-sample GDP growth density forecasts conditional on only lagged
GDP.

Figure 10: P-values from the Hartigans’ unimodality test over time, alongside NBER
recessionary periods (shaded grey)

Finally, we turn to out-of-sample evaluation of the forecast densities over the sample

period 1993Q1-2015Q4. Again this is the same evaluation period as ABG. Figures 11

and 12 show that the accuracy of the forecast densities deteriorates out-of-sample. The

null hypothesis of correct calibration is frequently rejected at a 95% significance level one-

quarter-ahead, but not one-year-ahead. Comparison with the in-sample densities over

this shorter evaluation period, from 1993/1994, indicates that this deterioration is in fact

shared by the in-sample density forecasts over this shorter period.16 Interestingly, the

16See Figures 17 and 18 in the online appendix.
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PITS are closer to the 45 degree line when not conditioning on financial conditions. Table

3 shows that it is the Bayesian QR methods, with Algorithm 1, that out-of-sample tend

to deliver the highest logarithmic predictive scores and the lowest CRPS. Importantly,

in terms of this paper’s focus on isolating the best means of constructing density fore-

casts from the same quantile forecasts, NP(freq) at least matches the accuracy of ABG,

according to CRPS, at both forecast horizons. The average logarithmic score statistics

are dominated by the forecasting failures at the time of the global financial crisis. So

we prefer to emphasize the CRPS. Conditioning the GDP density forecasts on NFCI also

now leads to improvements, especially one-quarter-ahead.

Despite the fact that the ABG densities are often beaten, this is not the takeaway.

Instead, the bottom-line is that these alternative ways of constructing the predictive

density from QRs match, and at times (albeit perhaps modestly) improve upon, the

accuracy of the ABG densities. But in so-doing they unmask deviations from unimodality

lost by ABG. In turn, they suggest that multimodalities, rather than deviations from

symmetry, are the primary feature of GDP density forecasts that should be emphasized

when conditioning on financial conditions.
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Figure 11: CDF of the out-of-sample PITS (one-quarter-ahead, 1993Q1-2015Q3) from the
6 density forecasts with NFCI and lagged GDP. Note: the figures show the empirical CDF

of the PITS (red line), the CDF of the PITS under the null hypothesis of correct calibration

(the 45 degree line) and the 5% critical value bands of the Rossi and Sekhposyan (2019) PITS

test
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Figure 12: CDF of the out-of-sample PITS (one-year-ahead, 1994q4-2015Q4) from the 6
density forecasts with NFCI and lagged GDP. Note: the figures show the empirical CDF of

the PITS (red line), the CDF of the PITS under the null hypothesis of correct calibration (the

45 degree line) and the 5% critical value bands of the Rossi and Sekhposyan (2019) PITS test

Table 3: Average Log Predictive Score (LPS) and Cumulative Ranked Probability Score
(CRPS) for the one-quarter-ahead forecasts (out-of-sample, 1993Q1-2015Q3) and the one-
year-ahead forecasts (out-of-sample, 1994q4-2015Q4)

With NFCI & GDP With lagged GDP only

One-quarter-ahead One-year-ahead One-quarter-ahead One-year-ahead

LPS CRPS LPS CRPS LPS CRPS LPS CRPS

ABG -2.24 1.27 -2.02 0.98 -2.31 1.32 -1.99 0.96

EW(B) -2.32 1.30 -2.00 0.97 -2.45 1.38 -2.14 1.01

NP(B) -2.25 1.25 -1.99 0.96 -2.31 1.29 -2.02 0.96

NP(BM) -2.23 1.24 -2.01 0.95 -2.31 1.29 -2.02 0.96

NP(freq) -2.47 1.26 -2.05 0.97 -2.33 1.29 -2.08 0.96

ABG Kernel -2.27 1.31 -2.12 1.01 -2.34 1.32 -2.10 0.99

5 Conclusion

This paper reconsiders how to construct density forecasts from quantile regressions. While

quantile regression methods are finding increasing application in macroeconomics, as one

means of accommodating nonlinear relations, the specific issue of how to construct density

forecasts from quantile regressions has received less attention. In the macroeconomic
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literature, following ABG, it has become popular to assume a specific parametric form

when matching the quantile forecasts to a density forecast. We reconsider nonparametric

approaches to construct predictive densities from quantile regressions, estimated either by

frequentist or Bayesian methods, and compare these with the parametric approach. We

suggest a simple simulation-based algorithm. Unlike the parametric approach of ABG,

we find it can flexibly accommodate various distributional shapes.

In an application revisiting ABG, our proposed nonparametric approach corroborates

the finding of Adrian et al. (2021) that the conditional density of GDP growth in the US

can exhibit multimodality, especially during recessionary periods. These multimodalities

in GDP growth are found to be increasingly prominent when the density forecasts, as

suggested by ABG, are conditioned on financial conditions. But while Adrian et al.

(2021) are forced to move away from the QR framework of ABG to document this novel

empirical fact, we show that this finding is indeed shared by QR-based density forecasts

- as long as we let the “data speak”. However, we need to let the “data speak” not

just when we model GDP growth with respect to financial conditions, via the first-step

quantile regressions, but when we subsequently construct the forecast densities from the

quantile forecasts.

Accordingly, this paper supports the addition of QR methods to the toolkit of the

macro modeler. But it suggests that, when constructing density forecasts from quantile

forecasts, it is better to respect the nonparametric flavor of QR by also using non (or

semi) parametric methods to construct the density. Importantly, these methods provide

similarly accurate, even slightly improved, density forecasts for US GDP growth. The

methods are also operational irrespective of whether the first-step QRs are estimated via

frequentist or Bayesian methods. Relative to ABG, and their assumption that the forecast

density is skewed-t, our nonparametric approach unmasks deviations from unimodality in

GDP growth forecast densities when conditioned on financial conditions. The evolution

of multimodalities, rather than asymmetries, then becomes the central macroeconomic

narrative for the conditional predictive distribution of GDP growth.
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6 Online Appendix

This appendix contains supplementary tables and figures referred to in the main paper.

Table 4: Average Mean Squared Error and Kullback-Leibler (KL) distance for NP(freq)
using k = 4 and k = 99

Models Mean Variance Skewness Kurtosis KL

k = 4 and T = 100

DGP1: Unimodal (Gaussian) 0.02 1.19 0.05 1.84 0.31

DGP2: Unimodal (Negative Skewness) 0.17 20.87 0.02 5.42 0.32

DGP3: Unimodal (High Kurtosis ) 0.03 1.21 1.26 105.97 0.35

DGP4: Bimodal 0.02 0.03 0.16 0.28 0.32

DGP5: Trimodal 0.04 0.36 0.00 0.06 0.36

k = 4 and T = 1000

DGP1: Unimodal (Gaussian) 0.01 1.02 0.04 1.85 0.30

DGP2: Unimodal (Negative Skewness) 0.06 18.61 0.01 5.42 0.32

DGP3: Unimodal (High Kurtosis ) 0.00 0.76 1.23 106.43 0.35

DGP4: Bimodal 0.02 0.03 0.15 0.27 0.32

DGP5: Trimodal 0.04 0.36 0.00 0.06 0.36

k = 99 and T = 100

DGP1: Unimodal (Gaussian) 0.01 0.12 0.07 0.47 0.05

DGP2: Unimodal (Negative Skewness) 0.04 2.76 0.08 3.46 0.04

DGP3: Unimodal (High Kurtosis ) 0.01 0.33 1.15 82.94 0.03

DGP4: Bimodal 0.00 0.00 0.01 0.02 0.07

DGP5: Trimodal 0.00 0.01 0.01 0.03 0.06

k = 99 and T = 1000

DGP1: Unimodal (Gaussian) 0.00 0.11 0.02 0.34 0.02

DGP2: Unimodal (Negative Skewness) 0.00 3.02 0.01 1.70 0.02

DGP3: Unimodal (High Kurtosis ) 0.00 0.37 0.86 85.31 0.00

DGP4: Bimodal 0.00 0.00 0.01 0.00 0.02

DGP5: Trimodal 0.00 0.01 0.00 0.00 0.04
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Figure 13: In-sample plots of the four moments of the ABG and NP(freq) forecast densities
(one-quarter-ahead), when ABG’s skewed-t density is simulated not truncated
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Figure 14: In-sample plots of the four moments of the ABG and NP(freq) forecast densities
(one-year-ahead), when ABG’s skewed-t density is simulated not truncated
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Figure 15: CDF of the in-sample PITS for NP(freq) when k = 4 and k = 99. Note: the

figures show the empirical CDF of the PITS (red line), the CDF of the PITS under the null

hypothesis of correct calibration (the 45 degree line) and the 5% critical value bands of the Rossi

and Sekhposyan (2019) PITS test
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Figure 16: CDF of the in-sample PITS for ABG when k = 19. Note: the figures show the

empirical CDF of the PITS (red line), the CDF of the PITS under the null hypothesis of correct

calibration (the 45 degree line) and the 5% critical value bands of the Rossi and Sekhposyan

(2019) PITS test
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Figure 17: CDF of the in-sample PITS (one-quarter-ahead forecasts, 1993Q1-2015Q3)
from the 6 density forecasts with and without NFCI. Note: the figures show the empirical

CDF of the PITS (blue line) from the QR models with NFCI (and lagged GDP), the empirical

CDF of the PITS (dashed red line) from the QR models without NFCI, plus the CDF of the

PITS under the null hypothesis of correct calibration (the 45 degree line) and the 5% critical

value bands of the Rossi and Sekhposyan (2019) PITS test
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Figure 18: CDF of the in-sample PITS (one-year-ahead forecasts, 1994Q1-2015Q4) from
the 6 density forecasts with and without NFCI. Note: the figures show the empirical CDF

of the PITS (blue line) from the QR models with NFCI (and lagged GDP), the empirical CDF

of the PITS (dashed red line) from the QR models without NFCI, plus the CDF of the PITS

under the null hypothesis of correct calibration (the 45 degree line) and the 5% critical value

bands of the Rossi and Sekhposyan (2019) PITS test
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Figure 19: GDP growth density forecasts conditional on NFCI and lagged GDP for 2005
made one-year-ahead (in-sample)
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Figure 20: GDP growth density forecasts conditional on NFCI and lagged GDP for 2008
made one-year-ahead (in-sample)
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Figure 21: GDP growth density forecasts conditional on NFCI and lagged GDP for 2005
made one-quarter-ahead (out-of-sample)
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Figure 22: GDP growth density forecasts conditional on NFCI and lagged GDP for 2008
made one-quarter-ahead (out-of-sample)
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Figure 23: GDP growth density forecasts conditional on NFCI and lagged GDP for 2005
made one-year-ahead (out-of-sample)
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Figure 24: GDP growth density forecasts conditional on NFCI and lagged GDP for 2008
made one-year-ahead (out-of-sample)
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